
Synthesizing Stochasticity in Biochemical Systems∗

Brian Fett
University of Minnesota

200 Union St. S.E.
Minneapolis, MN 55455

fett@umn.edu

Jehoshua Bruck
California Institute of

Technology
Mail Code 136-93

Pasadena, CA 91125
bruck@paradise.caltech.edu

Marc D. Riedel
University of Minnesota

200 Union St. S.E.
Minneapolis, MN 55455

mriedel@umn.edu

ABSTRACT
Randomness is inherent to biochemistry: at each instant,
the sequence of reactions that fires is a matter of chance.
Some biological systems exploit such randomness, choosing
between different outcomes stochastically – in effect, hedg-
ing their bets with a portfolio of responses for different envi-
ronmental conditions. In this paper, we discuss techniques
for synthesizing such stochastic behavior in engineered bio-
chemical systems. We propose a general method for de-
signing a set of biochemical reactions that produces differ-
ent combinations of molecular types according to a speci-
fied probability distribution. The response is precise and
robust to perturbations. Furthermore, it is programmable:
the probability distribution is a function of the quantities
of input types. The method is modular and extensible. We
discuss strategies for implementing various functional de-
pendencies: linear, logarithmic, exponential, etc. This work
has potential applications in domains such as biochemical
sensing, drug production, and disease treatment. Moreover,
it provides a framework for analyzing and characterizing the
stochastic dynamics in natural biochemical systems such as
the lysis/lysogeny switch of the lambda bacteriophage.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences—
Biology and genetics

General Terms
Design

Keywords
Synthetic biology, Computational Biology, Synthesis, Bio-
chemical Reactions, Stochasticity, Markov processes, Ran-
dom processes

∗This work is supported in part by the “Alpha Project” at
the Center for Genomic Experimentation and Computation,
an NIH Center of Excellence (grant no. P50 HG02370).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

1. INTRODUCTION
Increasingly, biology is becoming a computational science,

as modeling and simulation are applied alongside experi-
mental work in the lab [1]. Furthermore, with the advent
of techniques for synthesizing and manipulating genetic ma-
terial, it is striving to become an engineering discipline. In
the nascent field of synthetic biology, researchers aim to cre-
ate entirely new biological functions by modifying and inte-
grating biological components in a systematic way [2]. The
potential impacts are far-reaching. Recent feats of synthetic
biology include cellulosic ethanol [3], anti-malarial drugs [4],
and tumor detection [5].

By custom-designing the genetic material of organisms
such as yeast and E. coli, it is possible to directly syn-
thesize biochemistry for applications. In principle, the ap-
proach could produce biochemical reactions of nearly any
form. However, designing a set of reactions to implement a
desired functionality – efficiently and robustly – is a chal-
lenging problem.

Biochemical systems are typically characterized through
computationally intensive Monte Carlo simulations [6, 7].
Cook and Bruck have studied biochemical reactions from a
theoretical perspective, for instance proving universality [8].
Samoilov et al. have discussed the implementation of signal
processing functions [9].

In this paper, we focus on stochasticity in biochemical sys-
tems, tackling the synthesis of probabilistic behavior as a
general design problem. We propose a method for designing
a set of biochemical reactions that produces different com-
binations of molecular types according to a specified prob-
ability distribution. The response is precise and robust to
perturbations. Furthermore, it is programmable: the prob-
ability distribution is a function of the quantities of input
types. The method is modular and extensible. We discuss
strategies for implementing various functional dependencies:
linear, logarithmic, exponential, etc. More complex func-
tions can be built by combining the modules for these basic
functions.

1.1 Randomness in Biochemistry
Interesting cellular chemistry typically involves complex

molecules such as proteins and enzymes. Within the con-
fines of a cell, the quantities of such molecules are often sur-
prisingly small: on the order of tens, hundreds, or thousands
of molecules of each type. At this scale, individual reactions
matter, and the problem must be analyzed discretely [6].
The complexity stems from the dynamics at play among the
multitude of coupled reactions. Randomness is inherent: at

each instant, the exact sequence of reactions that fires next
is a matter of chance.

Indeed, a biochemical system behaves as a discrete, prob-
abilistic, finite-state machine – or Markov chain. The state
consists of the molecular quantities measured in whole (i.e.,
non-negative integer) amounts. For instance, with molecu-
lar types a, b, and c, the state of the system might be 15
molecules of a, 25 of b, and 0 of c:

S1 = [15, 25, 0].

Transitions occur as discrete events when reactions fire. Con-
sider the reaction

a + b
10→ 2c.

When this reaction fires, one molecule of a is consumed, one
of b is consumed, and two of c are produced. (Accordingly,
a and b are called the reactants and c the product.) The new
state is

S2 = [14, 24, 2].

Each reaction has an associated rate (listed above the arrow
in our notation). Given several reactions, the probability of
each firing is proportional both to its rate and to the quan-
tities of its reactants present. We assume that the rate is
constant. (In general, it might be dependent on tempera-
ture, cell size, and other physical parameters.)

Certain biochemical systems appear to exploit random-
ness, choosing between different outcomes with a probability
distribution – in effect, hedging their bets with a portfolio
of responses. Examples include the pap pili epigenetic re-
sponse of bacteria [10], the lentiviral positive-feedback loop
in the HIV virus [11], and the lysis/lysogeny switch of the
lambda bacteriophage [12]. We discuss the lambda switch in
detail in Section 3.

1.2 Engineering Stochasticity
As in natural systems, randomness can play a pivotal role

in synthetically engineered systems. Consider the following
design problem. (While entirely hypothetical, it is in the
vein of exciting recent research [5].)

Suppose that bacteria are engineered to invade tumors
and produce a drug to kill the cancer cells. The bacteria are
engineered to produce the drug in response to a compound
that is injected into the cancerous tissue. Until this com-
pound is supplied, the bacteria remain inert. In response
to it, each bacterium produces a fixed quantity of the drug.
The dosage must be calibrated. If every bacterium responds,
then the patient receives too high of a dose of the drug. In-
stead the correct dosage is achieved if only some fraction of
the bacteria respond – say, if m out of the population of n
respond.

Yet, all the bacteria are identical and subject to the same
environment. How can this be achieved? We could aim
to engineer a probabilistic response whereby each bacterium
produces the drug with probability m

n
.

Further, suppose that the dosage must have a specific
functional dependence on the input quantity of the com-
pound so that it can be adjusted as the treatment progresses.
Given an input quantity X, the required probabilistic re-
sponse might be of the form p = f(X) where f(X) is, say,
a logarithmic function.

Figure 1 illustrates the general framework that we adopt
for synthesis. The input consists of quantities of certain

molecular types. The output consists of the probability dis-
tribution of certain discrete outcomes. The design problem
is to select biochemical reactions that perform this compu-
tation. We use the convention that a lower-case letter, such
as x, denotes a molecular type; the corresponding upper-case
letter, X, denotes the quantity of this type.

��

��

�
�
�

������	��
�

��
�
����),,(1,,1 nTT XXfP
m

�
�

=

Figure 1: Computational Framework. The input
consists of quantities of molecular types X1, . . . , Xn.
The output consists of a probability distribution on
discrete outcomes T1, . . . , Tm that is some function f
of the inputs. The computation is performed by bio-
chemical reactions firing discretely and probabilisti-
cally.

In this paper, we tackle the design problem in the abstract
– working not with specific molecular types but rather with
arbitrary types (a, b, c, etc.). Appealing to the modern
toolkit of synthetic biology, we assume that biochemical re-
actions in suitable types can be engineered [2, 13].

2. MODULAR SYNTHESIS SCHEME
We decompose synthesis into two modules, as shown in

Figure 2. First, a deterministic module produces output
quantities that are a fixed function of input quantities. Then
a stochastic module produces the desired probabilistic re-
sponse as a function of these outputs. The determinis-
tic module is composed of smaller modules implementing
specific functional dependencies. We discuss the stochastic
module first.

2.1 Stochastic Module
This module produces the desired probabilistic response

as a function of quantities of input types. Consider the
following example.

Example 1: Suppose that we have a system with molecular
types d1, d2, and d3. We wish to to program the production
of these types with the probability distribution

p1 = 0.3, p2 = 0.4, p3 = 0.3,

respectively. To do so, we set up initializing reactions:

e1
1−→ d1, e2

1−→ d2, e3
1−→ d3.

We initialize the system with quantities of e1, e2, and e3 in
the desired ratio of 3 : 4 : 3,

E1 = 30, E2 = 40, E3 = 30.

(Should we want a different probability distribution, we sim-
ply change the ratio of these initial quantities.) Given these
ratios, the reaction producing d1 fires first with probabil-
ity 0.3, the one producing d2 fires first with probability 0.4,
and the one producing d3 fires first with probability 0.3. We
want to cement this initial choice. Accordingly, we set up
reinforcing reactions:

e1 + d1
103

−→ 2d1, e2 + d2
103

−→ 2d2, e3 + d3
103

−→ 2d3.

��

��

��������	�

���
�

������	�	��	��

���
�

�
�
�

�
�
�

�
�
�),,(1,,1 mTT YYgP

m
�

�
=

),,(111 nXXfY �=

),,(1 nmm XXfY �=

Figure 2: Modular Synthesis. The inputs to the deterministic module are quantities of n types X1, . . . , Xn. The
outputs are quantities of m types Y1, . . . , Ym. These quantities are functions f1, . . . , fm of the input quantities.
In turn, these outputs are inputs to the stochastic module, which produces a probability distribution on
distinct outcomes T1, . . . , Tm. The distribution is a function g of its input quantities.

Also, we set up stabilizing reactions:

d1 + e2
103

−→ d1, d1 + e3
103

−→ d1, d2 + e1
103

−→ d2,

d2 + e3
103

−→ d2, d3 + e1
103

−→ d3, d3 + e2
103

−→ d3.

Note that the reinforcing and stabilizing reactions have much
higher rates than the initializing reactions. Finally, we set
up purifying reactions:

d1 + d2
106

−→ ∅, d1 + d3
106

−→ ∅, d2 + d3
106

−→ ∅.

(∅ indicates that there are no products that we care about
for this reaction.) Note that the purifying reactions have
still higher rates.

The reinforcing, stabilizing and purifying reactions ensure
that as soon as an initializing reaction fires, producing a
molecule of di, this choice quickly wins out: the production
of more molecules of di is encouraged, while the production
of the other types dj , j 6= i, is strongly inhibited. So the
firing probabilities for the initializing reactions at the outset
dictate the probability distribution of the final outcome.

2.1.1 The Set of Reactions
The stochastic module consists of five categories of re-

actions. The rates are assumed to be similar for all the
reactions in each category; however, the rates between cate-
gories must be different: some categories are slow and other
are comparatively fast, as explained in Section 2.1.3.

For all of the categories, the subscripts i and j run over
the number of desired outcomes. For each outcome, we have
an input type e; a catalyst type d; food types f ; and output
types o.

Initializing Reactions

∀ i : ei
ki→ di

These reactions initiate the response with the production of
a catalyst type. They are the slowest reactions in the sys-
tem. The first one to fire generally determines the outcome.
(As discussed in Section 2.1.3, the likelihood of a different
outcome is vanishingly small.)

Reinforcing Reactions

∀ i : di + ei
k′i→ 2di

These reactions amplify the choice made by the initializ-
ing reactions, increasing the quantity of the catalyst type.
(The quantity of catalyst that is produced here is limited
by amount of the input type that is supplied. It could be

limited some other way, but this is convenient.)

Stabilizing Reactions

∀ j 6= i : di + ej

k′′ij→ di

These reactions consume all input types other than the one
that was selected. So they inhibit competing outcomes.

Purifying Reactions

∀ j 6= i : di + dj

k′′′ij→ ∅

These reactions quickly suppress any competing catalyst
types. They are the fastest reactions in the system. If ever
there are multiple catalyst types present, those in the mi-
nority are quickly wiped out, whereas those in the majority
are only slightly weakened in number.

Working Reactions

∀i, `i : di + f`i

k′′′′i→ di + o`i

These reactions take the decision made by the initializing
reactions and turn it into action: they produce output types
in the desired quantity. Several output types in differing
proportions can be created for each catalyst type. This can
be accomplished with different working reactions operating
on the same catalyst type. Alternatively, a single working
reaction can be set up with multiple output types in the
desired proportions.

2.1.2 Initial Quantities
The probability of the i-th initializing reaction firing first

is proportional to its rate, ki, and to the quantity Ei of
its input type ei. Accordingly, we can program the firing
probabilities by setting the ratio of the initial quantities:

∀ i : pi =
EikiP
∀j Ejkj

.

Thus, the initial quantities of the input types directly deter-
mine the probability distribution of the outcomes. At the
outset, there are no catalyst types or output types. The
initial quantities of the food types are set to the maximum
quantity desired for the corresponding output types.

2.1.3 Reaction Rates
The rates should be selected so that the initializing and

working reactions are the slowest; the reinforcing and stabi-
lizing reactions comparatively much faster; and the purify-
ing reactions fastest of all:

ki ≈ k′′′′i � k′i ≈ k′′ij � k′′′ij .

In order to quantify the effect of this separation in the rates,
let us choose a multiplicative factor, γ, and set the rates as
follows:

γki = k′i = k′′ij = k′′′ij /γ = γk′′′′i . (1)

Define an error to be the case where the first initializing re-
action to fire does not determine the final outcome; instead,
a different catalyst type wins out.

We characterize this error as a function of γ. More specif-
ically, we set up the reactions described in Section 2.1.1 for
i = 1, 2, 3, with each ki = 1 and each k′i, k

′′
ij , k

′′′
ij , and k′′′′i

set according to Equation 1. We set the initial quantity of
each input type to 100. We assume that a working reaction
needs to fire 10 times for us to declare an outcome.

We performed Monte Carlo simulations and obtained the
results shown in Figure 3. The graph shows that the error
can be made vanishingly small by increasing the separation
in the rates.

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000

P
er

ce
nt

 o
f

Tr
aj

ec
to

rie
s

in
 E

rr
or

Reaction Rate Separation (γ)

Figure 3: Error Analysis for the Stochastic Module.
Monte Carlo simulations with 100,000 trials were
performed for different values of γ. The graph gives
the percentage of trials that resulted in error.

2.2 Deterministic Module
The deterministic module provides flexibility in program-

ming the probabilistic response. It consists of a series of
submodules implementing specific functional dependencies.

Example 2: In Example 1, a stochastic module imple-
mented the mutually exclusive production of types d1, d2,
and d3. However, suppose we need a probabilistic response
with a specific functional dependence on the quantity of in-
put types x1 and x2:

p1 = 0.3 + 0.02X1 − 0.03X2

p2 = 0.4 + 0.03X2

p3 = 0.3− 0.02X1.

To achieve this, we add some “preprocessing”. We set up
reactions that modify the probabilities of the initializing re-
actions occurring:

2e3 + x1
103

−→ 2e1, 3e1 + x2
103

−→ 3e2.

These two reactions enforce the exact dependence that we
need on the quantities X1 and X2.

2.2.1 Functional Modules
In describing the functions that the modules implement,

we add subscripts to the quantities of molecular types to

denote when these quantities exist: zero indicates that this
is the initial quantity, whereas infinity indicates that it is
the quantity after the module has finished.

Linear

αY∞ = βX0

This module produces a quantity of an output type that is
proportional to the quantity of an input type. For integer
coefficients α and β, the reaction is:

αx → βy.

Exponentiation:

Y∞ = 2X0

This module consumes molecules of an input type one at a
time, doubling the quantity of an output type for each. Its
behavior is described by the following pseudocode:

1 ForEach x {

2 Y = 2 * Y;

3 }.

The reactions are:

x
slow−→ a

a + y
faster−→ a + 2y′

a
fast−→ ∅

y′
medium−→ y.

Initially, Y is one and all other quantities (except X) are
zero.

Logarithm:

Y∞ = log2(X0)

This module is similar to the exponentiation module, ex-
cept that instead of doubling the output, the input is forced
to halve itself; each time it does so, the output is incre-
mented by one. Its behavior is described by the following
pseudocode:

1 While Not(X==1) {

2 X = X/2;

3 Y = Y+1;

4 }.

The reactions are:

b
slow−→ a + b

a + 2x
faster−→ c + x′ + a

2c
faster−→ c

a
fast−→ ∅

x′
medium−→ x

c
medium−→ y.

Initially, B is a small but non-zero quantity and all other
quantities (except X) are zero.

Raising to a Power:

Y∞ = XP0
0

This module implements the raising of an input to a power
based on the computations XP =

Q
P (X) and αX =

P
X(α).

This implies a double loop:

1 ForEach p {

2 ForEach x {

3 D = D + Y;

4 }

5 Y = D; D = 0;

6 },

The reactions are:

p
slowest−→ a (2)

a + x
medium−→ b + a + x′ (3)

b + y
fastest−→ y′ + d + b (4)

b
faster−→ ∅ (5)

y′
fast−→ y (6)

a
slow−→ e (7)

e + y
faster−→ e (8)

e + x′
faster−→ e + x (9)

e
fast−→ ∅ (10)

d
slower−→ y. (11)

Initially, Y is one and all other quantities (excluding X and
P) are zero. Line 1 corresponds to Reaction 2 and line 2
to Reaction 3; these introduce “loop” types a and b, re-
spectively, that cause fast reactions to occur until depletion.
These types then degrade (Reactions 5, 7, and 10). Slow
reactions allow the state to reset for another iteration. Line
3 is performed by Reaction 4. Reaction 6 resets the state
for the next iteration of the inner loop. Reaction 8 reini-
tializes the quantity of y to zero. Line 5 is performed by
Reaction 11. Reaction 9 resets x for the next iteration of
the outer loop.

Isolation:

Y∞ = 1

This module is used to enforce an initial state consisting of a
single molecule of some type. It is needed as a precursor for
exponentiation and raising to a power. The reactions are:

c + 2y
fast−→ c + y (12)

c
slow−→ ∅. (13)

The module requires only that the quantities of types y and c
be non-zero at the outset. Upon completion, there is exactly
one molecule of type y and none of type c. Note that the
molecules of c are all consumed, so the molecules of y can
serve as inputs to other modules, provided that Reaction 13
completes in time.

2.2.2 Combining Modules
A simple example of combining linear and logarithmic

modules is given in Section 3.2. With the linear and raising-
to-a-power modules, our scheme can be used to implement

arbitrary polynomial functions; hence, in principle, it could
be used to approximate complex functions through Taylor
series expansions.

Note that in our definitions above, the molecular types
are specific to each module (e.g., each x appearing in a dif-
ferent module should be considered a distinct type when
combining these). Also, the rates – “fast” vs. “slow”, etc. –
are relative within the modules. When combining modules,
one might have to choose reactions with appropriate sepa-
rations in their rates. (In some cases, the slowest reaction
in one module might be faster than the fastest reaction in
the next.)

3. APPLICATION: MODELING
THE LAMBDA BACTERIOPHAGE

We apply our synthesis method to fit the data from a well-
known biological model, that of the lysis/lysogeny switch of
the lambda bacteriophage [12]. Our goal is to demonstrate
that our method can accurately capture the stochastic be-
havior observed in natural biological systems. This is analo-
gous to the concept of“reduced-order modeling” in engineer-
ing analysis: the input/output behavior is maintained while
the internal dynamics are lost. We do not present any bio-
logical interpretation of the results. However, we point out
that our synthetic model is more compact and perhaps more
robust to specific perturbations than the natural model.

3.1 Natural Model
The lambda bacteriophage is a virus that infects the E. coli

bacteria. It chooses one of two survival strategies: either it
integrates its genetic material with that of its host and then
replicates when the bacterium divides (termed lysogeny);
or it manipulates the molecular machinery of its host to
make many copies of itself, killing the bacterium in the pro-
cess, and thereby releasing its progeny into the environment
(termed lysis).

The biological model for this behavior consists of an elabo-
rate set of 117 reactions in 61 molecular types [12]. We focus
on a single input type, moi, that plays a crucial role in the
viral response. (It correlates with the number of copies of
the virus that have infected the cell.) We analyze the proba-
bilistic response for the production of two output types, cro2
and ci2. The production of the former corresponds to lysis;
the production of the latter to lysogeny. (The outcomes are
judged according to threshold values: 55 for cro2 and 145
for ci2.)

We characterized the probabilistic response of the model
with Monte Carlo simulations. Sweeping the input type moi
across a range of values, we recorded the percentage of trials
that resulted in each outcome. From this data, we performed
a curve fit. The result:

P (lysis) = 15 + 6 log2(MOI) +
MOI

6
. (14)

The data points and the curve fit are shown in Figure 5.
We assume that one or the other outcome always occurs, so
P (lysogeny) = 1− P (lysis).

3.2 Synthetic Model
Applying our synthesis methodology to fit Equation 14,

we obtain a model with 19 reactions in 17 types, given in
Figure 4. Deterministic modules produce the linear and log-
arithmic dependence. A stochastic module, with its five

(fan-out) moi
109

−→ x1 + x2

(linear) 6x2
109

−→ y1

(logarithm) b
10−3

−→ b + a

a + 2x1
106

−→ a + x′1 + c

2c
106

−→ c

a
103

−→ ∅
x′1

1−→ x1

(linear) c
1−→ 6y2

(assimilation) e1 + y2
109

−→ e2

e2 + y1
109

−→ e1

(initializing) e1
10−9

−→ d1

e2
10−9

−→ d2

(reinforcing) e1 + d1
1−→ d1

e2 + d2
1−→ d2

(stabilizing) e2 + d1
1−→ d1

e1 + d2
1−→ d2

(purifying) d1 + d2
109

−→ ∅

(working) d1 + f1
10−9

−→ d1 + cro2

d2 + f2
10−9

−→ d2 + ci2

Figure 4: Synthetic Model. These reactions imple-
ment a probabilistic response that fits that of the
lysis/lysogeny decision in the lambda bacteriophage.

categories of reactions, produces the probabilistic response.
Some simple additional reactions are used to glue the mod-
ules together (these are labeled fan-out and assimilation).

As with the natural model, the input type is moi and the
output types are cro2 and ci2. The initial quantities of e1

and e2 are 15 and 85, respectively (chosen to fit the constant
of 15 in Equation 14). The initial quantities of f1 and f2 are
set sufficiently high to ensure that the appropriate working
reactions bring the output molecules above their thresholds
of 55 and 145, respectively. The initial quantity of b is set
to one, and all other quantities are set to zero.

We characterized the probabilistic response of the syn-
thetic model with Monte Carlo simulations. The results are
shown in Figure 5. As can be seen, it implements a close fit
to the natural model.

4. DISCUSSION
We are exploring the implementation of our synthesis method-

ology with parts from the MIT BioBricks repository [13].
Looking forward, our work could play an important role
in domains such as biochemical sensing, drug production,
and disease treatment. However, the impetus for this re-
search is more immediate: we are interested in analyzing
and characterizing the stochastic dynamics of natural bio-
logical systems in a rigorous and systematic way – applying
engineering concepts such as abstraction and reduced-order
modeling. In addition to the lambda switch discussed here,
we are studying a number of other biological models, includ-
ing the lentiviral positive-feedback loop in the HIV virus [11]
and the pheromone-response pathway in yeast [14].

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

P
(ly

si
s)

 (%
)

Initial MOI

Natural Model
Synthetic Model

Curve Fit for Natural Model
Curve Fit for Synthetic Model

Figure 5: Probabilistic Response. The figure shows
the result of Monte Carlo simulations for both for
the natural model and for our synthetic model,
sweeping the quantity of the input type moi from
1 through 10. It shows curve fits for both sets of
data.

5. REFERENCES
[1] D. Endy and R. Brent,“Modelling Cellular Behaviour,”

Nature, Vol. 409, pp. 391–395, 2001.
[2] D. Endy, “Foundations For Engineering Biology,” Nature,

Vol. 438, pp. 449–453, 2005.
[3] M. Sedlak and N. Ho, “Production of Ethanol from

Cellulosic Biomass Hydrolysate Using Genetically
Engineered Yeast,” Applied Biochemistry & Biotechnology,
Vol. 114, No. 1-3, pp. 403–416, 2004.

[4] D.-K. Ro et al., “Production of the Antimalarial Drug
Precursor Artemisinic Acid in Engineered Yeast,” Nature,
Vol. 440, pp. 940–943, 2006.

[5] J. Anderson, E. Clarke, A. Arkin, and C. Voigt,
“Environmentally Controlled Invasion of Cancer Cells by
Engineered Bacteria,” Journal of Molecular Biology, Vol.
355, No. 4, pp. 619–627, 2006.

[6] D. Gillespie, “Exact Stochastic Simulation of Coupled
Chemical Reactions,” Journal of Physical Chemistry, Vol.
81, No. 25, pp. 2340–2361, 1977.

[7] M. Gibson and J. Bruck, “Efficient Exact Stochastic
Simulation of Chemical Systems with Many Species and
Many Channels,” Journal of Physical Chemistry A, No. 104,
pp. 1876–1889, 2000.

[8] M. Cook, “Networks of Relations,” Ph.D. Dissertation,
Advisor J. Bruck, Caltech, 2005.

[9] M. Samoilov, A. Arkin, and J. Ross, “Signal Processing by
Simple Chemical Systems,”Journal of Physical Chemistry,
Vol. 106, pp. 10205–10221, 2002.

[10] A. Hernday, B. Braaten, and D. Low,“ The Intricate
Workings of a Bacterial Epigenetic Switch,” Advances in
Experimental Medicine & Biology, Vol. 547, No. 83-9, 2004.

[11] L. Weinberger, J. Burnett, J. Toettcher, A. Arkin, and D.
Schaffer, “Stochastic Gene Expression in a Lentiviral
Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive
Phenotypic Diversity,” Cell, Vol. 122, pp. 169-182, 2005.

[12] A. Arkin, J. Ross, and H. McAdams, “Stochastic Kinetic
Analysis of Developmental Pathway Bifurcation in Phage
λ-Infected E. Coli Cells,” Genetics, Vol. 149, No. 1633, 1998.

[13] BioBricks Parts List, MIT Registry of Standard Biological
Parts,http://parts.mit.edu.

[14] I. Herskowitz, “Life Cycle of the Budding Yeast
Saccharomyces cerevisiae,” Microbiological Reviews, Vol. 52,
No. 4, pp. 536-553, 1988.

http://www.nature.com/nature/journal/v409/n6818/abs/409391a0.html
http://www.nature.com/nature/journal/v438/n7067/abs/nature04342.html
http://www.ingentaconnect.com/content/hum/abab/2004/00000114/F0030001/art00008
http://www.ingentaconnect.com/content/hum/abab/2004/00000114/F0030001/art00008
http://www.ingentaconnect.com/content/hum/abab/2004/00000114/F0030001/art00008
http://www.nature.com/nature/journal/v440/n7086/abs/nature04640.html
http://www.nature.com/nature/journal/v440/n7086/abs/nature04640.html
http://pubs.acs.org/cgi-bin/abstract.cgi/jpchax/1977/81/i25/f-pdf/f_j100540a008.pdf?sessid=6006l3
http://pubs.acs.org/cgi-bin/abstract.cgi/jpchax/1977/81/i25/f-pdf/f_j100540a008.pdf?sessid=6006l3
http://paradise.caltech.edu/papers/thesis011.pdf
http://pubs.acs.org/cgi-bin/abstract.cgi/jpcafh/2002/106/i43/abs/jp025846z.html
http://pubs.acs.org/cgi-bin/abstract.cgi/jpcafh/2002/106/i43/abs/jp025846z.html
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WSN-4GRH1R2-7&_user=616288&_coverDate=07%2F29%2F2005&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000032378&_version=1&_urlVersion=0&_userid=616288&md5=4c1d68fdf51cf0608faab2215602c275
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WSN-4GRH1R2-7&_user=616288&_coverDate=07%2F29%2F2005&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000032378&_version=1&_urlVersion=0&_userid=616288&md5=4c1d68fdf51cf0608faab2215602c275
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WSN-4GRH1R2-7&_user=616288&_coverDate=07%2F29%2F2005&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000032378&_version=1&_urlVersion=0&_userid=616288&md5=4c1d68fdf51cf0608faab2215602c275
http://www.genetics.org/cgi/content/abstract/149/4/1633
http://www.genetics.org/cgi/content/abstract/149/4/1633
http://www.genetics.org/cgi/content/abstract/149/4/1633
http://parts.mit.edu
http://mmbr.asm.org/cgi/reprint/52/4/536.pdf
http://mmbr.asm.org/cgi/reprint/52/4/536.pdf

