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Abstract—The accepted wisdom is that combinational circuits
must have acyclic (i.e., loop-free or feed-forward) topologies.
And yet simple examples suggest that this need not be so. In
previous work, we advocated the design of cyclic combinational
circuits (i.e., circuits with loops or feedback paths). We proposed
a methodology for synthesizing such circuits and demonstrated
that it produces significant improvements in area and in delay.
The analysis method that we used to validate cyclic circuits was
based on binary decision diagrams. In this paper, we propose
a much more efficient technique for analysis based on Boolean
satisfiability (SAT).

I. INTRODUCTION

A. Cyclic Combinational Circuits

A collection of logic gates forms a combinational circuit
if the outputs can be described as Boolean functions of the
current input values only. A common misconception is that
combinational circuits must have acyclic topologies; that is to
say, they must be designed without any loops or feedback
paths. In fact, the idea that “combinational” and “acyclic”
are synonymous terms is so thoroughly ingrained that many
textbooks provide the latter as a definition of the former
(e.g., (1), p. 14; (2), p. 193)

Indeed, any acyclic circuit is clearly combinational. Re-
gardless of the initial values on the wires, once the values
of the inputs are fixed, the signals propagate to the outputs.
The behavior of a circuit with feedback is generally more
complicated. Such a circuit may exhibit sequential behavior,
as in the case of an S-R latch, or it may be unstable, as in
the case of an oscillator.

And yet, circuits with cyclic topologies can be combina-
tional. Consider the example in Figure 1. It is combinational
in the strictest sense: it produces the required output values
regardless of the prior values on the wires and for any choice
of delay parameters. If x = 0 then g1 produces an output of
0, because 0 is a controlling value for an AND gate. If x = 1
then g4 produces a value of 1, because 1 is a controlling value
for an OR gate. In both cases, the cycle is broken and the
circuit produces definite outputs. Since x must assume one of
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Fig. 1. A cyclic combinational circuit.

these two values, we conclude that the circuit always produces
definite outputs. In fact, it implements two functions that both
depend on all five variables:

f1 = b(a + x(d + c)),
f2 = d + c(x + b a)

(+) denotes OR, (·) denotes AND

Note that the computation of the two functions overlaps. If we
were to implement these functions with an acyclic circuit, we
would need eight two-input gates.

B. Analyzing Cyclic Circuits

In previous work, we showed that combinational circuits
can be optimized significantly if cycles are introduced (3), (4).
A pivotal step in the synthesis methodology is determining
whether cyclic circuits that are found behave combinationally.



This analysis problem is conceptually straight-forward: cor-
rectness is ascertained by following all controlling values as
they propagate through the circuit from the primary inputs –
zeros controlling the outputs of AND gates, ones controlling
the outputs of OR gates, these values controlling other gates,
and so on. Of course, stepping through all possible input
assignments is not a tractable proposition for real circuits:
given n primary inputs, there would be 2n input assignments
to consider.

This is a specific problem but one that shares many proper-
ties with a broad class of problems in logic verification: it has
an affirmative answer if a property holds for all possible input
assignments; it has a negative answer if the property does not
hold for any input assignment. The property – in this case,
whether the circuit produces combinational behavior or not –
is one directly ascribed to logical operations on the circuit –
in this case, how controlling values propagate.

So-called SAT-based techniques, based on heuristic solu-
tions to the Boolean satisfiability problem, have been deployed
very successfully for problems in this vein (5), (6). Consider
the classic problem in circuit verification: determining whether
two circuits A and B are equivalent in the sense that they
implement the same Boolean function. To solve this problem,
one creates a new circuit C with the outputs of A and B
tied together by an exclusive-OR gate. Then one asks the SAT
question: is there some assignment of input values that satisfies
the Boolean function implemented by C (i.e., for which the
output of C evaluates to one)? If not, then the two circuits
are equivalent. The starting point for SAT-based verification,
then, is a circuit that returns identically zero (UNSAT) for
an affirmative answer to the problem; and not identically
zero (SAT) for a negative answer. The analysis proceeds by
packaging the Boolean function implemented by the circuit as
a formula in Conjunctive Normal Form (CNF). This is passed
to heuristic algorithms known as SAT-Solvers (7), (8). In
theory, such algorithms can take time that is exponential in
the number of variables to complete. In practice, they have
shown themselves to be remarkably efficient for problems
in circuit verification, often handling large problem instances
with thousands of variables with ease.

Of course, in order to package an analysis problem as a
CNF formula for SAT, the starting point must be an acyclic
circuit. Given a cyclic circuit, how can the analysis for
combinationality proceed? We adopt a straight-forward yet
efficient strategy.

• We find a feedback arc set, that is to say, wires that we
can cut to make the circuit acyclic.

• We introduce new dummy variables at these cut locations.
• We encode the entire computation of the circuit in terms

of ternary-valued logic: zeros, ones and “undefined”
values. These ternary values are encoded with “dual-rail”
binary values: zero is encoded as [0, 0], one as [1, 1], and
“undefined” as either [1, 0] or [0, 1].

• We set up an acyclic circuit that answers the question:
given undefined values for the dummy variables (in the
ternary encoding) is there any input assignment that
produces undefined values (again in the ternary encoding)
at the output? This circuit forms the SAT question.

The algorithm is described in detail in Section II. The
complexity is entirely dependent on the runtime of the SAT
solver. Setting up the circuit for the SAT instance is compara-
tively trivial: it entails but a single pass through the circuit to
compute a feedback arc set. The circuit for the SAT question
is larger than the original circuit: for every gate in the original
circuit, approximately six gates are needed to formulate the
ternary-valued encoding; in addition to the primary inputs,
the dummy variables at the cut locations are included. Given
the efficiency of SAT solvers, this is a winning strategy in
spite of the increase in the number of variables. In Section IV,
we compare runtimes on benchmark circuits for this method
compared to BDD-based methods.

C. Prior and Related Work
In an earlier era, theoreticians commented on the possibility

of having cycles in combinational logic and conjectured that
this might be a useful property (9), (10), (11). Both Mc-
Caw and Rivest presented examples of cyclic circuits with
provably fewer gates than is possible with equivalent acyclic
circuits (12), (13). (We have extended and generalized these
theoretical results. Most notably, we have constructed a family
of circuits with cyclic topologies having half as many gates
as is possible with acyclic topologies (4)).

In a later era, practitioners observed that cycles sometimes
appear in combinational circuits synthesized from high-level
descriptions. Stok noted that cycles can be introduced dur-
ing resource-sharing optimizations at the level of functional
units (14). However, since synthesis and verification tools balk
when given combinational logic with cycles, he concluded that
those optimizations have to be rejected at the high-level phase.

Motivated by Stok’s observation, Malik discussed analysis
techniques for cyclic circuits (15). He formulated a symbolic
analysis algorithm based on ternary-valued simulation. He
proposed a topological approach, beginning with a transfor-
mation from a cyclic specification to an equivalent acyclic
one. Edwards followed a similar strategy, discussing tech-
niques specifically targeted at cyclic circuits that are produced
inadvertently during high-level design (16). Shiple refined
and formalized Malik’s results and extended the concepts to
combinational logic embedded in sequential circuits (17).

In previous work, we described a methodology for syn-
thesizing cyclic circuits (3). Our approach for synthesis
is conceptually general. Cycles are introduced through the
incremental application of restructuring and minimization
operations, optimizing a design for area and delay. These
optimizations are carried through to the decomposition and
technology mapping phases. The methodology is implemented
as a package called CYCLIFY, built within the Berkeley SIS
environment (18). Trials on benchmark circuits as well as
examples from industry demonstrated that cyclic solutions
are not a rarity; they can readily be found for most circuits
of practical interest. CYCLIFY reduced the area of standard
benchmark circuits by as much as 30% and the delay by
as much as 25%. For analysis, we discussed techniques for
validating cyclic circuits based on symbolic event propagation
with binary decision diagrams (BDDs) (19). We also discussed
techniques performing timing analysis of cyclic circuits (20).



D. Circuit Model
The concepts discussed in this paper are not tied to any

particular physical model or computing substrate. Generally
the exposition is at a symbolic level, that is to say, in terms
of Boolean expressions. However, we first discuss the circuit
model in an explicit sense – in terms of signal values.

We work with the digital abstraction of zeros and ones.
Nevertheless, our model recognizes that the underlying signals
are, in fact, analog: each signal is a continuous real-valued
function of time, corresponding to a voltage level. For analysis,
we adopt a ternary framework, extending the set of Boolean
values B = {0, 1} to the set of ternary values T = {0, 1,⊥}.
Here ⊥ represents either an ambiguous value, e.g., a voltage
value between logical 0 and logical 1, or else an uncertain
value, i.e., a signal that might be 0 or 1 – but we do not know
which.

The idea of three-valued logic for circuit analysis is well
established. It was originally proposed for the analysis of
hazards in combinational logic (21). Bryant popularized its
use for verification (22), and it has been widely adopted for
the analysis of asynchronous circuits (23). For a theoretical
treatment, see (24). Malik and Shiple discuss the analysis of
cyclic circuits in this framework (15), (17).

Central to the analysis is the concept of controlling values.
In (4), a formalism is presented for computing the con-
trolling values of arbitrary logic functions, in a symbolic
context. For simplicity, in this paper we assume that the
network has been decomposed into primitive gates, namely
AND/OR/NAND/NOR gates and inverters. Recall that 0 is
the controlling value for an AND gate, as shown in Figure 2.
Similarly, 1 is the controlling value for an OR gate.
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Fig. 2. An AND gate with 0, 1, and ⊥ inputs.

Our analysis characterizes the functional and temporal be-
havior of circuits according to the so-called “floating-mode”
assumption (23), (25): at the outset, all wires in a circuit are
assumed to have unknown or possibly undefined values, and
so are assigned the value ⊥. This assumption ensures that the
analysis does not infer stability in cases where ambiguous or
unstable signals might persist.

Consider the circuit fragment in Figure 3. One might be
tempted to reason as follows: the output of the AND gate g1

is fed in complemented and uncomplemented form into the
OR gate g2. Thus, one of the inputs to the OR gate must be
1, and so its output must be 1.

And yet, by definition, ⊥ designates an undefined value.
For instance, it could indicate a voltage value exactly half
way between logical 0 and logical 1. Within the floating-
mode framework, we remain agnostic: the output of the OR
gate is ⊥.
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Fig. 3. An illustration of the floating mode.

Conceptually, the analysis that we perform for cyclic
circuits is just an algorithmic implementation of the idea
illustrated in Example 1. All the wires initially have value
⊥. We apply definite values to the inputs, and track the
propagation of well-defined signal values. Once a definite
value is assigned to an internal wire, this value persists for the
duration (so long as the input values are held constant). For
any input assignment, a circuit reaches a so-called fixed point
in the ternary framework: a state where no further updates of
controlling values are possible. This fixed point is unique (23).

We define the validity of a cyclic circuit as follows:
• If, for some assignment to the primary inputs, there are
⊥ values in the fixed point that the circuit settles at, then
the circuit is “Invalid.”

• Conversely, if for every assignment to the primary inputs
there are no ⊥ values in the fixed point that it settles at,
then the circuit is “Valid.”

Of course, if there are “don’t-care” conditions, then validity
only applies to assignments in the “care” set. We could adopt a
less stringent definition, only insisting that no ⊥ values persist
at the primary outputs; this would not alter our algorithm
materially, so here we use the more stringent definition that
no ⊥ values can persist on any of wires in the circuit, whether
these be internal or at the primary outputs.

II. ALGORITHM

Given a cyclic circuit, the objective of the analysis is to
produce an acyclic circuit that computes an output value that
is identically zero if and only if the cyclic circuit is valid. This
acyclic circuit will then be fed into a SAT solver; we will refer
to it as the “SAT circuit”.

1) The first step is to find wires that, if cut from the circuit,
would break all the cycles. Such a set can be found
through a simple depth-first search (26).

Bit 0 Bit 1 Value
0 0 0
0 1 ⊥
1 0 ⊥
1 1 1

Fig. 4. Dual-rail encoding scheme for ternary values.

2) The next step is to convert every gate in the circuit into
a corresponding module that operates on the dual-rail



encoded ternary logic. Using the encoding scheme given
in Figure 4, this step is straight-forward. Consider the
encoding for an AND operation on ternary-valued inputs
a and b. We use pairs of inputs for each value: a0 and
a1 corresponding to a, and b0 and b1 corresponding to
b. The outputs are encoded by the functions:

f0 = a0b0 + a1b0b̄1

f1 = a1b1 + a0b̄1b̄0

Other gates, such as OR, NAND, NOR, etc., can be im-
plemented similarly. The NOT operation is particularly
easy – we simply complement the bit on each rail.

3) Each primary input is simply considered twice to
obtain its dual-rail encoding. This way, if the primary
input is assigned logic 1, the value (11) is fed; if it is
assigned logic 0 the value (00) is fed.

4) At every cut location, we introduce a pair of dummy
variables feeding into the corresponding dual-rail mod-
ule. This allows for the possibility that the value in the
circuit is ⊥, encoded as different values assigned to each
of the dummies, (01) or (10).

5) For every pair of dummy variables, we set up an
equivalence checker: this is a module that evaluates to 1
if and only if the value assigned to dummies agrees with
the value computed by the circuit at the cut location. The
circuit may be computing ⊥, encoded as (01) or (10);
in this case, the equivalence checker evaluates to 1 if
the dummies have different values. Call the output of
the equivalence checker xi for each cut location i. For
dummy variables d1 and d2 and gate outputs f1 and f2,
the logic for the equivalence checker is

xi = d̄1d̄2f̄1f̄2 + d1d2f1f2 +
d̄1d2f̄1f2 + d̄1d2f1f̄2 +
d1d̄2f̄1f2 + d1d̄2f1f̄2.

6) For every pair of dummy variables, we set up a
⊥-checker: this is simply an exclusive-OR gate on
the two dummies; it evaluates to 1 if and only if the
dummies are assigned different values (and so the are
encoding ⊥). Call the output of the ⊥-checker yi for
each cut location i.

Note that rather than introducing dummy variables,
equivalence checkers, and ⊥-checkers into the SAT
circuit, we could instead append the logically equivalent
clauses to the circuit’s CNF formula representation
to produce the same results. By introducing dummy
variables and equavalence gates into the SAT circuit, we
are implicitly adding these clauses to the CNF formula.
Many modern SAT techniques take advantage of circuit
structure alongside the circuit’s CNF representation in
order to find a result faster (27). Using the later method
would not make use of the structurial information that
dummy variables, equivalence checkers and ⊥-checker
add to the circuit.

7) Finally, as illustrated in Figure 5, the output of the circuit
is the AND of the AND of the xi’s and the OR of the
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Fig. 5. Constructing the SAT instance.

yi’s.

Example 1
Consider the circuit in Figure 6, consisting of four NAND
gates. Note that there are two cycles. Cutting these and
inserting dummy variables d and e, we obtain the circuit in
Figure 7. Next, we replace each gate with a dual-rail version;
we feed in pairs of dummy variables, d0, d1, and e0, e1,
corresponding to each of the previous dummy variables; we
double up the primary inputs a and b; we add two equivalence-
checkers, producing x0 and x1; we add two ⊥-checkers (i.e.,
exclusive-OR gates) producing y0 and y1; and we add three
logic gates g1, g2, and g3 to form the final output.
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Fig. 6. A cyclic circuit
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Fig. 7. The circuit in Figure 6 with cycles broken.

This circuit, shown in Figure 8, forms the SAT instance with
six variables: a, b, d0, d1, e0, and e1. We see that for a = b = 1,
d0 = d̄1, and e0 = ē1, we get ⊥ values on each pair of
rails into the equivalence checkers, indicating that the inputs



to each are equivalent; so x0 and x1 produce outputs of 1; y0

and y1 produce outputs of 1 as well; so the final output is 1.
Therefore, the SAT instance is satisfiable and so the circuit is
invalid. Indeed, a = b = 1 are non-controlling values for the
NAND gates, so this is the outcome that we expect. �

III. PROOF OF CORRECTNESS

First, we argue that a SAT circuit that evaluates to 1 never
corresponds to a valid cyclic circuit. Indeed, if a SAT circuit
evaluates to 1, then both the gates g1 and g2 are at 1. If g1 is
at 1, then the corresponding values in the cyclic circuit are at
a fixed point; however, if g2 is at 1, then some of the values
in the fixed point are ⊥. By definition, the cyclic circuit is
invalid.

Next we argue that every invalid cyclic circuit translates
into a SAT circuit that evaluates to 1 for a specific input
assignment. Indeed, if the circuit is invalid then it has a fixed
point with ⊥ values on some of the wires of the cut set. (A
fixed point that contains ⊥ values somewhere must also have
these on the cut set.) In the SAT circuit, consider such an
input assignment: assign the dummy values that correspond to
the values from the fixed point; this ensures that g1 is at 1.
Because some of these values are ⊥, g2 is also at 1 and so
the SAT circuit evaluates to 1.

IV. IMPLEMENTATION AND RESULTS

We have implemented the algorithm described in Sec-
tion Section II in the Berkeley ABC environment (28). ABC
invokes the “MiniSat” SAT Solver (29). We performed trials
on cyclic circuits produced by our tool, CYCLIFY, from
benchmark circuits in the IWLS collection. (For circuits with
latches, we extracted the combinational part.) All circuits had
been mapped to 2-input NAND and NOR gates and inverters.
We count the area of the NAND/NOR gates as 2, and that of
inverters as 1. We compare the runtimes for the new SAT-based
method to those using our previous BDD-based approach (20).
Trials were performed on a 2.93 GHz Intel Core 2 Duo
Processor running Linux.

V. DISCUSSION

Early work in the 1960’s and 70’s established the premise of
combinational circuits with cycles, and suggested the possible
benefits. Still, combinational circuits are not designed with
cycles in practice. Perhaps designers have eschewed feedback
due to the apparent complexity of reasoning about cyclic
structures. And yet, feedback provides significant opportunities
for optimization, both for area and for delay. Indeed, contrary
to the conventional wisdom, cyclic solutions are not a rarity;
they can readily be found for most circuits that are not trivially
simple or sparse. We have run trials with our program, called
CYCLIFY, on a range of randomly generated examples and
benchmark circuits. We note that solutions for most of the
examples have deeply nested loops, with dozens or even
hundreds of cycles.

Our synthesis strategy is to introduce feedback in the
restructuring and minimization phases. A branch-and-bound
search is performed, with analysis used to validate and rank

Runtimes (seconds)
Circuit Area BDD Based SAT Based Ratio

5xp1 218 0.10 0.01 10.00
bbara 135 0.01 <0.01 1.00

clip 292 0.09 0.01 9.00
cse 346 0.13 0.03 4.33

dk16 426 0.09 0.03 3.00
duke2 664 2.35 0.07 33.57

ex1 514 0.36 0.07 5.14
keyb 401 0.24 0.03 8.00

misex3 1065 19.05 0.16 119.00
planet 890 1.03 0.08 12.88

planet1 882 1.40 0.11 12.73
pma 388 0.13 0.02 6.50

s1 555 0.56 0.06 9.33
s1488 1036 1.43 0.13 11.00

s386 224 0.02 0.02 1.00
sand 807 3.15 0.07 45.00

average 552 1.88 0.06 18.22

Fig. 9. Comparison of the runtime for the new SAT-based method with the
older BDD-based method on cyclic circuits from the IWLS Benchmarks.

potential solutions. Using BDDs, the analysis portion com-
pletely dominated the running time of the program CYCLIFY.
The SAT-based methodology proposed here can tackle much
larger benchmark circuits and it runs orders of magnitudes
faster (as anyone familiar with SAT-based methods might have
expected). For all of the circuits that we have tried, the time
that it took to convert the original circuit description into
the SAT instance took less than .01 seconds. Future work
will include developing specific heuristics for finding smaller
feedback arc sets; improvements here might positively impact
the runtime of the algorithm. We are working on integrating
the SAT-based method with synthesis; we will report the
results in the near future.
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