
1 

 

A Comparison Study of Spin Transfer Torque and Spin-Orbit Torque 

Based Stochastic Computing Using Computational Random Access 

Memory (SC-CRAM) 
 

Brandon R. Zink1, Marc D. Riedel1, Ulya R. Karpuzcu1 and Jian-Ping Wang1 Fellow, IEEE 
 

1Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA 

 

Stochastic computing (SC) is a probabilistic computing method that benefits from high noise resiliency and can perform complex 

arithmetic functions with a small number of logic gates, thus making it a promising solution for next generation neuromorphic systems. 

However, generating random bit-streams using CMOS based technologies requires a large number of transistors, thus drastically 

increasing the total computation delay and energy consumption. In our previous work, we presented a solution where stochastic 

computation and stochastic bit generation were embedded within the same memory cell using a spintronic based in-memory computing 

architecture called computational random access memory, which we called SC-CRAM. In this work, we evaluate and compare the 

performance of SC-CRAM between spin transfer torque (STT) and spin orbit torque (SOT) switching mechanisms using key parameters 

of magnetic tunnel junctions from the research labs, the current industry standards, and the project performance metrics. Our 

calculations showed that, based on current trends, the performance of SC-CRAM can be further optimized by utilizing the SOT switching 

mechanism when the tunneling magnetoresistance ratio of the magnetic tunnel junction pillars increases and the resistance-area product 

of the pillars is minimized. SC-CRAM benefits from high noise resilience and small array sizes and our results demonstrate that the its 

performance metrics can be enhanced.      

 
Index Terms—In-memory computing, magnetic tunnel junctions, spin orbit torque, spin transfer torque, stochastic computing. 

 

I. INTRODUCTION 

ARDWARE REALIZATION of biologically plausible 

neuromorphic computing algorithms is very difficult, and 

in some cases impossible, on modern computing platforms. 

This is due to the large number of transistors required to 

perform neuronal and synaptic tasks as well as the large 

latencies and energy dissipation caused by the Von-Neumann 

bottleneck [1]. There are certain neuromorphic tasks, such as 

recognition, classification, and prediction, that do not require 

high mathematical precision, but rather, require extracting key 

information and approximations from large data sets. Therefore, 

recent studies have examined beyond CMOS technologies and 

information encoding schemes as alternatives to the current 

CMOS based computing platforms for various neuromorphic 

applications [2-4]. In particular, various probabilistic 

computing schemes have been attractive solutions for these 

types of tasks since these methods are highly resilient to noise 

and small variations in the input data [5]. Spintronics is a branch 

of beyond CMOS technologies [6-7] that are promising 

solutions for probabilistic computing schemes and have been 

proposed as random number generators [8-11].      

One particular probabilistic computing scheme that has 

shown to be promising for neuromorphic computing 

applications is stochastic computing (SC) [12]. In SC, each real-

valued number x (0 ≤ x ≤ 1) is represented by a sequence of 

random bits, each of which has probability x of being one and 

probability 1 − x of being zero. These bits can either be serial 

streaming on a single wire or in parallel on a bundle of wires. 

When serially streaming, the signals are probabilistic in time; 

when in parallel, they are probabilistic in space. Consider the 

operation of multiplication implemented in SC. It consists of 

but a single AND gate. The inputs are two independent input 

stochastic bit streams A and B. The number represented by the 

output stochastic bit stream C is  

𝑐 = 𝑃(𝐶 = 1) = 𝑃(𝐴 = 1𝑎𝑛𝑑𝐵 = 1)                  (1) 

= 𝑃(𝐴 = 1)𝑃(𝐵 = 1) = 𝑎 ∙ 𝑏 

The probability of getting a one at the output, P(C = 1), is 

equal to the probability of simultaneously getting ones at the 

inputs, namely, P(A = 1) times P(B = 1). So the AND gate 

multiplies the two values represented by the stochastic bit 

streams. Consider the operation of addition implemented in SC. 

It is not feasible to add two probability values directly; this 

could result in a value greater than one, which cannot be 

represented as a probability value. However, we can perform 

scaled addition with a multiplexer (MUX), a digital construct 

that selects one of its two input values to be the output value, 

based on a third “select” input value. Call the select input S and 

the two data inputs A and B. When S = 1, the output C = A. 

Otherwise, when S = 0, the output C = B. With the assumption 

that the three input stochastic bit streams A, B, and S are 

independent, the number represented by the output stochastic 

bit stream C is 

𝑐 = 𝑃(𝐶 = 1) 

= 𝑃(𝑆 = 1𝑎𝑛𝑑𝐴 = 1) + 𝑃(𝑆 = 1𝑎𝑛𝑑𝐵 = 1)         (2) 

= 𝑃(𝑆 = 1)𝑃(𝐴 = 1) + 𝑃(𝑆 = 0)𝑃(𝐵 = 1) 

= 𝑠 ∙ 𝑎 + (1 − 𝑠) ∙ 𝑏 

Not only can SC perform arithmetic functions with a small 

number of gates, but it is also very noise resilient [17-19]. Some 

studies have shown that it can perform image filtering tasks 

even under conditions with 30% bit flips [17]. One of the key 

disadvantages of SC using CMOS based random number 

generators is the large number of transistors required to 

generate high quality random numbers. In some cases, random 

number generation can account for 80% of the total circuit area 

and total energy consumption [17]. One possible solution is to 
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replace CMOS based random number generators with 

spintronic based ones. Previous studies have exploited the 

intrinsic stochasticity of magnetic tunnel junctions (MTJs) in 

order to generate stochastic bit-streams using a single nano-

device [20-21] rather than using a large number of transistors 

required for CMOS based random number generators. While 

these solutions significantly reduce the area cost of generating 

stochastic bits, external circuitry and additional computation 

steps are still required.         

To avoid this short-coming, SC was implemented using the 

computational random access memory (CRAM) architecture, 

which is a spintronics based memory platform capable of 

performing logic operation directly within the memory cell [22-

23]. CRAM was first proposed in refs. [22-23] and 

demonstrated based on the STT-RAM array recently [24]. 

Performing SC operations via CRAM using a process called 

SC-CRAM has two key benefits over SC using CMOS based 

technologies. One is that the MTJ, which is a key component of 

the CRAM cell, has intrinsic stochasticity, which is an 

advantage for any MTJ based stochastic bit-generator. The 

second is that stochastic computation and random bit generation 

can be done within the same memory cell in CRAM, thus 

eliminating the additional area cost and computation delay 

needed for CMOS based SC.  In our previous work, we 

demonstrated that SC-CRAM outperformed conventional 

computing in CRAM in Local image thresholding, Bayesian 

inference, Bayesian belief network, and kernel density 

estimation in terms of computation delay, total circuit area, and 

noise margin [25].  

While our previous results in SC-CRAM were promising, the 

overall performance could be improved. In particular, the 

energy consumption of SC-CRAM was higher than in 

conventional CRAM for all four neuromorphic applications 

examined. In this study, we investigate how the intrinsic 

properties of the MTJs affect the total energy consumption in 

SC-CRAM for various arithmetic functions and neuromorphic 

applications. Additionally, we compare the performance of SC-

CRAM between the spin transfer torque (STT) and spin orbit 

torque (SOT) switching mechanisms. STT-RAM [26] has been 

developed for decades and now commercially available from 

industry [27-30]. SOT-RAM has been proposed and developed 

in past ten years [31]. Promising aspects of SOT-RAM over 

TABLE I 

CRAM LOGIC CRITERIA 

Logic 

operation 

Preset 

output 

state 

STT voltage criteria (VB) SOT voltage criteria (VB) 

BUFFER AP 
𝑉𝐶

𝑆𝑇 [
𝑅𝑂 + 𝑅𝑃

𝑅𝑂

] < 𝑉𝐵 < 𝑉𝐶
𝑆𝑇 [

𝑅𝑂 + 𝑅𝐴𝑃

𝑅𝑂

] 𝑉𝐶
𝑆𝐻 [

𝑅𝑆𝐻𝐸 + 𝑅𝑃

𝑅𝑆𝐻𝐸

] < 𝑉𝐵 < 𝑉𝐶
𝑆𝑇 [

𝑅𝑆𝐻𝐸 + 𝑅𝐴𝑃

𝑅𝑆𝐻𝐸

] 
NOT P 

AND AP 
𝑉𝐶

𝑆𝑇 [
𝑅𝑂(𝑅𝐴𝑃 + 𝑅𝑃)

𝑅𝐴𝑃𝑅𝑃 + 𝑅𝑂(𝑅𝐴𝑃 + 𝑅𝑃)
] < 𝑉𝐵 < 𝑉𝐶

𝑆𝑇 [
2𝑅𝑂𝑅𝐴𝑃

𝑅𝐴𝑃
2 + 2𝑅𝑂𝑅𝐴𝑃

] 𝑉𝐶
𝑆𝐻 [

𝑅𝑆𝐻𝐸(𝑅𝐴𝑃 + 𝑅𝑃)

𝑅𝐴𝑃𝑅𝑃 + 𝑅𝑆𝐻𝐸(𝑅𝐴𝑃 + 𝑅𝑃)
] < 𝑉𝐵 < 𝑉𝐶

𝑆𝐻 [
2𝑅𝑆𝐻𝐸𝑅𝐴𝑃

𝑅𝐴𝑃
2 + 2𝑅𝑆𝐻𝐸𝑅𝐴𝑃

] 
NAND P 

OR AP 
𝑉𝐶

𝑆𝑇 [
2𝑅𝑂𝑅𝑃

𝑅𝑃
2 + 2𝑅𝑂𝑅𝑃

] < 𝑉𝐵 < 𝑉𝐶
𝑆𝑇 [

𝑅𝑂(𝑅𝐴𝑃 + 𝑅𝑃)

𝑅𝐴𝑃𝑅𝑃 + 𝑅𝑂(𝑅𝐴𝑃 + 𝑅𝑃)
] 𝑉𝐶

𝑆𝐻 [
2𝑅𝑆𝐻𝐸𝑅𝑃

𝑅𝑃
2 + 2𝑅𝑆𝐻𝐸𝑅𝑃

] < 𝑉𝐵 < 𝑉𝐶
𝑆𝐻 [

𝑅𝑆𝐻𝐸(𝑅𝐴𝑃 + 𝑅𝑃)

𝑅𝐴𝑃𝑅𝑃 + 𝑅𝑆𝐻𝐸(𝑅𝐴𝑃 + 𝑅𝑃)
] 

NOR P 

RAP(P) = MTJ resistance in the AP(P) state. RO = MTJ resistance of preset state of output MTJ. RSHE = resistance of the spin Hall channel. VC
ST = STT critical 

switching voltage. VC
SH = SOT critical switching voltage. 

 

 

 

                 

       

Fig. 1. Diagram for (a) STT CRAM cell, (b) STT CRAM array, (c) SOT CRAM cell, and (d) SOT CRAM array. 
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STT-RAM have been presented by many research groups, e.g. 

speed, endurance, reliability, and potential ultra-low writing 

energy [32-35]. Our calculations use key performance metrics 

from the experimental results from research labs, the current 

industry standards, and metrics for projected future MTJ 

devices for both STT and SOT switching. While this work 

focuses on the usage of MTJs for SC-CRAM with two different 

switching mechanisms, it should be noted that MTJs can be also 

tuned into the building blocks for probabilistic computing to 

address optimization problems [36-39]. This article is organized 

as follows. The background information on the CRAM 

architecture, the working principles of SC-CRAM, and the four 

neuromorphic computing applications tested are explained in 

section II. The calculations and benchmarking methods are 

explained in section III. The results of our calculations are 

presented in section IV and an analysis of the results obtained 

is discussed in section V. The article is then summarized in 

section VI.    

II. BACKGROUND 

A. SOT vs STT CRAM 

Diagram for an STT- and SOT- CRAM cell is shown in Fig. 

1(a) and 1(c), respectively. The configuration of these two cells 

have several similarities. Both use a 2-transistor/1 MTJ 

structure, which allows for separate logic and memory paths. 

This enables true in-memory computing capability in CRAM, 

where memory read and write operations are performed using 

the memory word line (WL) and logic operations are performed 

within the CRAM cell by enabling the logic bit line (LBL). The 

difference between these two cells is that the write operations 

are done via the STT mechanism in Fig. 1(a) whereas the write 

operations are done via the SOT mechanism in Fig. 1(c).  

During the logic operation, LBL is high, which allows for 

CRAM cells in the same row to be connected electrically 

through the logic line (LL). The examples illustrated in Fig. 1(b) 

and 1(d) show an array of 3 cells in STT-CRAM and SOT-

CRAM, respectively. In both cases, two cells operate as input 

cells and one operates as the output cell. Voltage pulses (VBSL) 

are applied to the bit select lines (BSL) of the input cells, which 

generates a current through the output MTJ (IOUT), which is 

dependent on the resistance states of the input MTJs. The output 

MTJ will switch states if the voltage at the output MTJ exceeds 

the critical switching voltage (VC) of the output MTJ. For STT-

CRAM, the voltage of the output MTJ is IOUT*RMTJ, where RMTJ 

is the resistance of the output MTJ and switching is done via 

STT. For SOT-CRAM, the IOUT is applied to the spin Hall 

channel of the output cell, and the output voltage is IOUT*RSHE, 

where RSHE is the resistance of the spin Hall channel. The 

criteria for VBSL and the initial state of the output MTJ (output 

preset state) for various logic operations are shown in Table I. 

B. Working principles of SC-CRAM 

The process for implementing stochastic computing in 

CRAM is called SC-CRAM. This process is unique to other 

stochastic computing schemes as it allows for stochastic bit 

generation and computation to be performed directly within the 

                

       

Fig. 2. (a) Illustration of task scheduling for the SC-CRAM process (read step not shown). (b) Example of switching probability distribution 

curves for projected STT MTJs at various pulse widths. Note that the switching probability distribution data is used to determine the proper pulse 

amplitude for the perturb step. 
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same CRAM cells, therefore, external circuitry is not required 

for random number generation. The full process of SC-CRAM 

consist of synchronized reset, perturb, logic, and read cycles. 

To illustrate how multiplication of two bit-streams, A and B, 

is done using AND logic in SC-CRAM, consider the example 

shown in Fig. 2(a). This figure outlines all the four cycles of 

SC-CRAM. During the reset step, voltage pulses, VRES, are 

applied along the memory bit-lines of each cell, which 

initializes the input MTJs to the P-state and the output MTJ, Y, 

to the AP-state. Note that the initial state of the MTJ depends 

on the function of the cell. Any cells that undergo the perturb 

step will be initialized to the P-state whereas any cells that serve 

as output cells during logic operations will be set to the proper 

preset state for the desired logic function (recall table I). Since 

the example in Fig. 2(a) is performing AND logic, the output 

MTJ is set to the AP-state.   

During the perturb step, voltage pulses VP
(A) and VP

(B) are 

applied along the memory bit lines of input cells A and B. 

Unlike the reset and logic steps, the voltage pulses during the 

perturb step cause the MTJs to switch probabilistically rather 

than deterministically. The amplitude and duration of VP
(A) and 

VP
(B) determine the switching probability of A and B, which can 

be obtained through switching probability distribution data 

from the MTJs, an example of which is shown in Fig. 2(b). 

There are three ways of determining the desired switching 

probability of A and B. One is through machine learning 

algorithms, however, this is only applicable in neural networks 

where the input cell being used sets a synaptic weight. The 

second is when performing functions involving a fixed constant, 

in which case, the switching probability needs to be equal to the 

desired value of the constant. The third method of determining 

the desired switching probabilities is when these values are 

dependent on the input data. For example, in image processing 

applications, the switching probability of A would be dependent 

on the intensity of the corresponding pixel. 

The logic step in SC-CRAM follows the same criteria that is 

listed in table I. Since the example shown in Fig. 2(a) is 

illustrating AND logic, VB should be set so that Y switches to 

the P-state when A, B, or both are in the P-state, but Y should 

remain in the AP-state if both A and B are in the AP-state. Note 

that the resistance state of A and B are probabistic, however, 

switching during the logic step is still deterministic. 

During the read step, the final state of Y is measured using a 

voltage pulse VR, which should be small enough so that it does 

not affect the resistance state of Y. It should be noted that some 

functions require multiple logic steps. For these functions, the 

read step is replaced by the proceeding logic operation. In this 

case, the output cell for the first logic function serves as the 

input cell for the second logic function. The read step for each 

function only needs to be performed at the output of the final 

logic operation. 

C. Arithmetic Functions in SC-CRAM 

Figure 2(a) outlines the process for computing the 

multiplication of bit-streams A and B using AND logic. 

However, SC-CRAM is capable of performing a wide variety 

of arithmetic functions. In this study, we will investigate the 

performance of five additional functions, which are outlined in 

table II. These functions are scaled addition, scaled division, 

absolute valued subtraction, square root, and exponential. Note 

that these functions were chosen because they are important 

functions in the four applications being analyzed, which are 

described in further detail in section II. C. Also note that the SC-

CRAM process for these functions are also described in our 

previous work [25].   

Scaled addition can be accomplished using MUX, which can 

be implemented using 2 AND gates, 1 NOT gate, and 1 OR gate. 

Note that in SC-CRAM, it is more feasible to perform NOT 

logic using a NAND gate, where 1 of the inputs is set to a 

constant value of ’1’. Furthermore, OR logic should be 

performed using 2 NOT gates and a NAND gate (see ref. [25]). 

The total circuit in SC-CRAM consists of 3 input cells (A, B, 

and S), 5 intermediate cells (𝑆̅ , M1, M2, 𝑀1
̅̅ ̅̅  , and 𝑀2

̅̅ ̅̅   ), and 1 

output cell (Y). First, perturb pulses are applied to A, B, and S, 

where the switching probabilities of A and B are input 

dependent and the switching probability of S is 0.5. This is 

followed by one NOT logic step on S to obtain 𝑆̅ and two AND 

logic steps on A, S and B, 𝑆̅ to obtain M1 and M2, respectively. 

Two additional NOT logic steps are applied to M1 and M2 to 

obtain 𝑀1
̅̅ ̅̅ , and 𝑀2

̅̅ ̅̅  and finally, NAND logic is applied to obtain 

Y. The final output bit-stream should produce the function Y ≈ 

S*A+(1-S)*B or Y ≈ 0.5*(A+B). 

Scaled division of stochastic bit-streams A and B can be 

calculated using the logic for a JK flip-flop. Note that inputs A 

and B correspond to the J and K terminals, respectively. The JK 

flip-flop is implemented using 1 NOT gate, 4 NAND gates, and 

TABLE II 

CRITERIA FOR KEY ARITHMETIC FUNCTIONS IN SC-CRAM 

Function 
Number of 

CRAM cells (a) 

Number of Computation 

steps (b) 
Equation Logic gates used 

Multiplication 3 769 𝑌 ≈ 𝐴 ∗ 𝐵 AND 

Scaled Addition 9 1027 𝑌 ≈ 𝑆 ∗ 𝐴 + (1 − 𝑆) ∗ 𝐵 MUX (1 NOT, 2 AND, 1 OR) 

Scaled division 8 1027 𝑌 ≈
𝐴

𝐴 + 𝐵
 JK Flip Flop (1 NOT, 1 BUFFER, 4 NAND) 

Absolute valued 

subtraction(c) 
8 1282 𝑌 ≈ |𝐴 − 𝐵| XOR (1 NAND, 1 OR, 1 AND) 

Square root 11 1538 𝑌 ≈ √𝑋 1 AND + 2 OR 

Exponential 19 3331 𝑌 ≈ exp (−4𝑋) 3 NAND, 2 AND + 4 cascading AND 

(a) Number of cells indicate the number of CRAM columns used in the sub-array. All functions only require a single row of CRAM cells. 
(b) Assumes 8 bit resolution (256 length bit streams). 
(c) Assumes maximum correlation between input bit-streams  
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1 BUFFER. It should be noted that BUFFER logic in SC-

CRAM is the more feasible using an AND gate, where one of 

the inputs is set to a constant value of ’1’. The total circuit in 

SC-CRAM consists of 2 input cells (A and B), 5 intermediate 

cells (Q, Q̅, J, K1, K2), and 1 output MTJ (Y). Perturb pulses are 

applied to A and B, which are input dependent. This is followed 

by one NOT step on Q to obtain Q̅, one NAND step on Q̅ and A 

to determine J, one NAND step on Q and B to determine K1, 

and one NAND step on Q and K1 to obtain K2. The final steps 

are one NAND step on K2 and J to determine Y followed by one 

BUFFER operation on Y to obtain Q for the next cycle. Note Q 

is set to ‘0’, or the P-state, for the first cycle. The bit-stream for 

Y should produce the function Y ≈ A/(A+B). 

Absolute valued subtraction of stochastic bit-streams A and 

B can be done using XOR logic. In CRAM, an XOR gate can 

be implemented using 1 NAND gate, 1 AND gate, and one OR 

gate, which consists of 2 NOT gates and 1 NAND gate. The 

total circuit in SC-CRAM consists of 2 input cells (A and B), 4 

intermediate cells (M1, M2, 𝐴̅ , and 𝐵̅ ), and 1 output cell (Y). 

Perturb pulses are applied to A and B, which are input 

dependent, however, unlike the other functions, the bit-streams 

for A and B need maximum correlation. The process for 

achieving maximum correlation will be explained further in 

section II. C. The perturb step is followed by two NOT steps on 

A and B to obtain 𝐴̅  and 𝐵̅ , one NAND step on A and B to 

obtain M1, one NAND step on 𝐴̅ and 𝐵̅ to obtain M2, and one 

AND logic step on M1 and M2 to obtain Y. The final output bit-

stream should produce the function Y ≈ |A – B|. 

The square root of stochastic bit-stream X can be calculated 

using AND logic followed by two layers of OR logic. Note that 

the two OR gates both consist of two NOT gates and one NAND 

gate. The total SC-CRAM circuit consists of 4 input cells (X1, 

X2, C1, and C2), 6 intermediate cells (𝑋2
̅̅ ̅, M1, M2, 𝑀1

̅̅ ̅̅ , 𝑀2
̅̅ ̅̅ , and 

𝐶2
̅̅ ̅)  and 1 output MTJ (Y). Perturb pulses are applied to X1, X2, 

C1, and C2, where the switching probabilities of X1 and X2 are 

equal and input dependent and the switching probabilities of C1 

and C2 are fixed at 67% and 18%, respectively. Note that even 

though the switching probabilities of X1 and X2 are equal, the 

bit-streams should be generated independently, meaning they 

are decorrelated. This is followed by one AND step on X1 and 

C1 to obtain M1, two NOT logic steps on M1 and X2 to obtain 

𝑀1
̅̅ ̅̅   and 𝑋2

̅̅ ̅ , one NAND step on 𝑀1
̅̅ ̅̅   and 𝑋2

̅̅ ̅  to obtain M2, two 

NOT steps on M2 and C2 to obtain 𝑀2
̅̅ ̅̅  and 𝐶2

̅̅ ̅, and one NAND 

step on 𝑀2
̅̅ ̅̅   and 𝐶2

̅̅ ̅  to obtain Y. The final output bit-stream 

should produce the function Y ≈ √(X1).  

The method of solving an exponential function for our 

analysis was the same as the one described in ref. [15]. In our 

case, our desired function was Y ≈ exp(-4x). Note that this 

function can be re-written as Y ≈ exp[(-4/5x)5]. The first step is 

to solve exp(-4/5x) using the 3rd order Maclaurin expansion. 

This can be implemented in SC-CRAM using 3 NAND gates 

and 2 AND gates. The total SC-CRAM circuit for this first step 

consists of 6 input cells (X1, X2, X3, A1, A2, and A3), 4 

intermediate cells (M1, M2, M3, and M4), and 1 output cell (B0). 

Perturb pulses are applied to all the input cells, where the 

switching probabilities of X1, X2, and X3 are all equal, 

decorrelated, and input dependent and the switching 

probabilities of A1, A2, and A3 are fixed at 80%, 40%, and 

26.7%, respectively. NAND logic is used on X1 and A3 to obtain 

M1, AND logic is used on M1 and A2 to obtain M2, NAND logic 

is used on M2 and X2 to obtain M3, AND logic is used on M3 

and A1 to obtain M4, and NAND logic is used on M4 and X3 to 

obtain B0. Note that the bit-stream for B0 is approximately exp(-

4/5x). In order to calculate exp(-4x) from B0, 4 additional 

cascading AND gates are used on the bit-stream for B0, where 

B0 is buffered at each gate. 

D. Neuromorphic computing applications 

In this section, we describe the four applications that were 

analyzed in this study. These applications are Local image 

thresholding for character recognition, Bayesian inference for 

object location, Bayesian belief network for heart disaster 

prediction, and Kernel density estimation for object 

recognition. For each application, we compare the energy 

consumption and noise margin between each category of MTJs. 

It should be noted that the applications were also analyzed in 

our previous work [25], where we compared the performance 

metrics of SC-CRAM to conventional CRAM. Our results 

showed that SC-CRAM required significantly less CRAM cells 

than conventional CRAM, which leads to improved noise 

margin. Additionally, SC-CRAM requires less computation 

steps to perform these tasks, which can be attributed to the large 

number of logic gates required for conventional CRAM. 

Furthermore, the perturb and reset steps can be performed in 

parallel with the logic steps in separate cells, meaning that the 

computation speed of SC-CRAM does not increase as 

drastically with network size as it does with conventional 

CRAM. In this study, we are comparing the performance 

metrics of different MTJ technologies. 

Image thresholding is a very important step for optical 

character recognition. M. Najafi and M. Salehi applied SC to a 

local image threshold technique called the Sauvola method 

[19]. In this method, a window of 9 x 9 pixels is defined within 

a sub-section of a degraded input image. At each sub-section, a 

threshold (T) is calculated using (1a), where A(x,y) is the pixel 

intensity at point (x,y) and 𝐴̅ and σA are the mean and standard 

deviation of all the pixels within the window and σA is 

calculated using (1b). The circuit for calculating (1a) is shown 

in Fig. 3(a). Note that XOR logic is used to find |𝐴2̅̅ ̅ − (𝐴̅)2|. 
In this example, maximum correlation between the bit-streams 

for 𝐴2̅̅ ̅ and (𝐴̅)2 can be ensured since the bit-streams for A are 

used to generate bitstreams for A2. 

𝑇(𝑥, 𝑦) = 𝐴̅(𝑥, 𝑦) ∙ (
𝜎𝐴(𝑥, 𝑦) + 1

2
)                (1𝑎) 

𝜎𝐴(𝑥, 𝑦) = √|𝐴2̅̅ ̅ − (𝐴̅)2|                         (1𝑏) 

In the second application, a Bayesian inference system is 

used to determine the location of an object using distance (D) 

and bearing (B) data from three noisy sensors. The Bayesian 

inference mechanism, which is described in further detail in ref 

[36], produces a distribution of object locations by calculating 

the product series of conditional probabilities. The models for 

the probabilities for D and B for sensor j at position (x,y) can 

be described the Gaussian distributions in (2a) and (2b), where 
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μdj is the Euclidean distance between sensor j and position (x,y), 

θdj is equal to 5 + μdj/10, μbj is the viewing angle of sensor j, and 

θbj is set to 14.0626°. This data is used to calculate the object 

location probability at position (x,y), p(x,y), using (2c). The 

problem described in [40] and used for our analysis p(x,y) data 

on a 64 x 64 2D grid and the sensors are located at positions 

(0,0), (0,32), and (32,0). The circuit to solve (2c) is shown in 

Fig. 3(b). Each grid location uses 5 AND gates to calculate 

p(x,y). When implemented in SC-CRAM 11 cells are needed at 

each location (3 at the input AND gate and 2 for the remaining 

4 layers). 

𝑝(𝐷𝑗|𝑥, 𝑦) = Ɲ(𝜇𝑑𝑗 , 𝜃𝑑𝑗)                         (2𝑎) 

𝑝(𝐵𝑗|𝑥, 𝑦) = Ɲ(𝜇𝑏𝑗 , 𝜃𝑏𝑗)                         (2𝑏) 

𝑝(𝑥, 𝑦) = ∏ 𝑝(𝐵𝑗|𝑥, 𝑦) ∗ 𝑝(𝐷𝑗|𝑥, 𝑦)𝑗               (2𝑐) 

The third application is a Bayesian belief network (BBN) for 

heart disaster (HD) prediction, which is a probabilistic 

graphical model that represents a set of random variables and 

their conditional dependencies via a directed acyclic graph. The 

parent nodes in this network are exercise (E) and diet (D) and 

the child nodes are high blood pressure (BP) and chest pain 

(CP). The conditional probability tables for each node are 

shown in refs [40]. The probability of a heart disaster, P(HD), 

is shown in (3a), where PHD
E,D is the heart disaster probability 

when only considering E and D, PBP and PCP are the heart 

disaster probabilities for cases of high blood pressure and chest 

pain, respectively. The expression for PHD
E,D is shown in (3b), 

where PD, PE, and PE,D represent the heart disaster probabilities 

for cases of regular exercise, a good diet, and both, respectively. 

The circuit for calculating (3a) is shown in Fig. 3(c). Note that 

the final value for P(HD) is calculated using a JK flip-flop, 

which was implemented in SC-CRAM using the process 

described in the previous section. 

𝑝(𝐻𝐷) =
𝑃𝐵𝑃 ∗ 𝑃𝐶𝑃 ∗ 𝑃𝐻𝐷

𝐸,𝐷

𝑃𝐵𝑃 ∗ 𝑃𝐶𝑃 ∗ 𝑃𝐻𝐷
𝐸,𝐷 + 𝑃𝐵𝑃

̅̅ ̅̅ ̅ ∗ 𝑃𝐶𝑃
̅̅ ̅̅̅ ∗ 𝑃𝐻𝐷

𝐸,𝐷̅̅ ̅̅ ̅̅
       (3𝑎) 

𝑝𝐻𝐷
𝐸,𝐷 = [𝑃𝐸,𝐷𝑃𝐷 + 𝑃𝐸,𝐷̅𝑃𝐷̅]𝑃𝐸 + [𝑃𝐸̅,𝐷𝑃𝐷 + 𝑃𝐸̅,𝐷̅𝑃𝐷̅]𝑃𝐸̅    (3𝑏) 

The fourth application examined is Kernel Density 

Estimation (KDE) which is an image segmentation algorithm 

for object recognition, surveillance, and tracking [18]. The 

KDE algorithm is based on recent information that is 

continuously updating. Sample values of pixel intensity, X, are 

captured from recent iterations (Xt, Xt-1, …, Xt-N), which can be 

used to determine the probability density function (PDF), as 

described in (4). The circuit for calculating (4) is shown in Fig. 

3(d), where Xt represents the pixel intensity at time t and Xt-i 

represents the pixel intensity at the ith previous cycle. 

𝑃𝐷𝐹(𝑋𝑡) =
1

𝑁
∑ 𝑒−4|𝑋𝑡−𝑋𝑡−𝑖|

𝑁

𝑖=1

                    (4) 

III. CALCULATIONS AND BENCHMARKING 

For our analysis, we considered the performance of SC-

CRAM for six different categories of MTJs. These are the top 

 

Fig. 3. Circuit diagrams for (a) local image thresholding (LIT), (b) Bayesian inference system (BIS), (c) Bayesian belief network (BBN), and (d) 

Kernel density estimation (KDE). Images extracted from ref. [25]. 
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STT and SOT performing MTJs from research groups, STT and 

SOT from industry, and projected performance of STT and 

SOT MTJs. For research MTJs, the parameters for STT-

CRAM, were obtained from refs. [41-44] and the parameters 

for SOT-CRAM were obtained from [34, 48-51]. For industry 

MTJs, the parameters for STT-CRAM and SOT-CRAM were 

obtained from those recently reported by IBM [45] and IMEC 

[52-53], respectively. For projected MTJs in STT-CRAM, we 

used the parameters that were predicted in refs [46-47]. 

However, since SOT-MRAM is not as well established for 

industrial purposes as STT-MRAM, accurate projected 

parameters for SOT MTJs are not yet reported. Therefore, for 

projected MTJs in SOT-CRAM, we used the best reported 

parameters from various different studies [35, 54]. 

For each category, we calculated the total energy 

consumption for six different arithmetic functions. These are 

multiplication, scaled addition, scaled division, absolute valued 

subtraction, square root, and exponential function. Recall that 

the logic gates used for each of these calculations were 

described in section II. B and are shown in table II. Total energy 

consumption was also calculated for each of the four 

neuromorphic computing applications described in section II. 

C. Lastly, our analysis considered the influence of variations in 

device dimensions and determined which category of MTJs 

was the most resilient to these random variations in SC-

CRAM. Details of which parameters we considered, how 

energy consumption was determined, and how the effect of 

device variations were implemented in our calculations are 

described in more detail in the following sub-sections.      

A. Parameters for analysis 

There are six key MTJ properties that were considered for 

our analysis. These properties are the resistance-area (RA) 

product, the tunneling magnetoresistance (TMR) ratio, the 

thermal stability factor (Δ), the intrinsic critical switching 

current density (JC0), the switching time (τSW), and the 

precessional switching coefficient (AV). For all of our 

calculations, we assumed that the MTJ pillars were patterned 

into circular nanopillars with a diameter of 20 nm, meaning that 

the area is approximately 314 nm2. Therefore, the resistances in 

the AP and P-state (RAP and RP, respectively) can be calculated 

from the RA product and the TMR ratio, where RP = RA/area 

and TMR = 100*[(RAP-RP)/RP]. It should be noted that the 

lowest value recorded of JC0 for SOT switching is   

In our calculations, τSW is determined to be the perturb pulse 

width where the switching energy is minimized, which will be 

explained in further detail in the next section. When operating 

in the precessional switching regime (τSW < 5 ns), AV 

determines the relation between pulse width and pulse 

amplitude, where τSW
-1 = AV*(V-VC0). In some studies, the 

values for AV were explicitly reported and for other studies, we 

had to determine AV based on the data provided. In either case, 

values provided for AV assume a switching probability of 50%. 

This is an accurate assumption when determining τSW for the 

perturb step, however, the actual value for AV may be different 

for the reset and logic steps since the desired switching 

probability is close to 100%. Therefore, for the STT MTJs and 

research SOT MTJs, pulse widths of 5 ns were used for the reset 

and logic steps since the calculated energy consumption was 

minimized at this pulse width.    

There are three additional parameters that we considered for 

our SOT-CRAM calculations. These are the resistivity of the 

spin Hall channel (ρ), the spin Hall angle (θSH), and the 

thickness of the spin Hall channel (tSOT). The values for ρ were 

determined based on the material used for the spin Hall channel 

for each category. These materials were Ta, W, and BiSe for 

research MTJs, industrial MTJs, and projected MTJs, 

respectively. BiSe was chosen for projected MTJs since it has 

the largest θSH reported [54]. The values for tSOT were chosen 

based on the spin Hall channel thickness that provided the 

maximum θSH for each material. For our calculations in SOT-

CRAM, we assumed a spin Hall channel width and length of 40 

nm and 120 nm, respectively. From these values, we determined 

the resistance of the spin Hall channel (RSHE) using the 

calculation RSHE = (ρ*length)/(tSOT*width) = 3ρ/tSOT. 

B. Voltage and energy consumption calculations 

For each category of MTJs, the total energy consumption was 

calculated for each arithmetic function described in table II. The 

energy consumed from a single voltage pulse is calculated from 

(5), where RMTJ is the MTJ resistance, V is voltage pulse 

amplitude and tP is the pulse width. Note that RMTJ is either RAP 

or RP, depending on the state of the initial state of the MTJ and 

for SOT switching, RMTJ is replaced by RSHE. The total energy 

consumption (ETOT) is determined by (6), where NB is the total 

TABLE III 

PARAMETERS USED FOR ANALYSIS 

STT-CRAM 

Parameter Research Industry Projected 

RA product 

(Ω∙μm2) 
5 [37] 3.68 [41] 1 [42] 

TMR ratio 133 [38] 82 [41] 200 

Δ 60 [39] 45 [41] 75 [43] 

JC0 (MA/cm2) 3.1 [37] 1.25 [41] 1 [37] 

τSW(ns) 1.25 0.75 0.75 

AV (s-1V-1) 2.1 x 109 [40] 1.5 x 1010 [41] 1.5 x 1010 [41] 

SOT-CRAM 

RA product 

(Ω∙μm2) 
12.3 [44] 17.5 [48] 1 [42] 

TMR ratio 94 [45] 110 [49] 200 

Δ 45 [45] 48 [49] 60 [50] 

JC0 (MA/cm2) 75 [46] 100 [48] 1 [35] 

τSW (ns) 2 0.75 0.25  

AV (s-1V-1) 4.76 x 108 [48] 1.46 x 1010 [48] 1.46 x 1010 [48] 

SOT material/  

ρ (μΩ∙cm) 
Ta / 190 [34] W / 160 [49] BiSe / 2150 [50] 

θSH -0.25 [34] -0.32 [48] 2.88 [50] 

tSOT (nm) 5 [47] 3.5 [49] 8 [50] 
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number of bits and EPERT, ELOGIC, and ERES are the energies 

during the perturb, logic, and reset step respectively. For our 

calculations, we assumed 8-bit resolution, therefore, NB = 256. 

𝐸 =
𝑉2𝑡𝑃

𝑅𝑀𝑇𝐽
                                        (5) 

𝐸𝑇𝑂𝑇 = 𝑁𝐵 ∗ (𝐸𝑃𝐸𝑅𝑇 + 𝐸𝐿𝑂𝐺𝐼𝐶 + 𝐸𝑅𝐸𝑆)              (6) 

For all six categories of MTJs, three different combinations 

of V and tP were determined, one for perturb, another for logic, 

and a third for reset operations. To calculate these values, we 

first considered the desired switching probability (PSW), as 

defined in (7), where τ is the characteristic switching time. For 

thermal activation switching (tP ≥ 5 ns), τ is defined by (8) 

where τ0 is the inverse attempt frequency, which we assumed to 

be 1 ns [55] and VC0 is the intrinsic switching voltage, which 

was directly calculated from JC0 using VC0 = (JC0/area)*RMTJ.  

𝑃𝑆𝑊 = 1 − exp (−
𝑡𝑃

𝜏
)                             (7) 

𝜏 = 𝜏0 exp [∆ (1 −
𝑉

𝑉𝐶0
)]                         (8) 

It should be noted that (8) cannot be used for precessional 

switching (tP < 5 ns). For the perturb step, we assumed PSW = 

0.5, which means that tP ≈ τ. This means that V could be 

calculated directly from tP using tP
-1 = AV*(V-VC0). However, 

for the reset and logic steps, we assumed PSW = 0.99, so this 

calculation needs to be modified. From (5), we can determine 

that tP/τ ≈ 4.6 when PSW = 0.99, meaning that τ can be used to 

determine V. This means that AV should be modified 

accordingly for cases when PSW = 0.99. Note that this 

modification of AV was only done for the logic and reset steps 

but was not necessary for perturb steps. 

We calculated V from tP values ranging between 0.25 ns to 

20 ns for perturb, reset, and logic operations and calculated the 

switching energy at each point using (5). The combination of V 

and tP that provided the lowest switching energy was the one 

that was chosen in our calculations. The example provided in 

Fig. 4(a) shows a plot of the switching energy vs. tP for the 

perturb operation in the research STT MTJs. Here we see that 

the switching energy is minimized when tP = 1.25 ns, which 

corresponds to V = 544 mV, as shown in Fig. 4(b). This 

calculation was repeated for logic and reset operations as well 

as for all operations for the remaining 5 MTJ categories.      

C. Device variations 

Our calculations also considered the effect of device 

variations to see which category of MTJs were the most 

resilient to noise and imperfections in SC-CRAM operations. In 

our analysis, device variations were measured in terms of a 

percent change in MTJ diameter from the nominal 20 nm. For 

SOT-CRAM, we also had to account for percent change in spin 

Hall channel width from the nominal 40 nm. Note that a percent 

change in MTJ diameter directly correlates to an equal percent 

change in RP and RAP (σRP and σRAP, respectively). 

Furthermore, since Δ and VC0 are proportional to the free layer 

volume, we assumed that σΔ = -σRMTJ and σVC0 = 0.1*σRMTJ.  

The SC-CRAM process for the six arithmetic functions listed 

in table II were simulated in MATLAB for bit-stream 

probabilities ranging from 10% to 90% for all six MTJ 

categories. Each simulation was repeated 100 times and the 

final calculation was averaged among all trials. To quantify the 

accuracy of the output, the mean square error (MSE) was 

calculated from these simulations for all six categories of MTJs 

considered. Expression for MSE is shown in (9), where NPTS is 

the total number of points plotted and YCALC and YEXP are the 

calculated and expected outputs, respectively. In our study we 

repeated each calculation for σRMTJ = 0 – 30%, assuming a 

linear distribution. Note that RMTJ was recalculated for each trial 

for each value of σRMTJ tested. Figure 5 provides an example 

 

Fig. 4. Plot for (a) switching energy vs pulse width and (b) pulse 

amplitude vs. pulse width for the perturb operation in research MTJs. 

 

 

 

 

Fig. 5. Output probability vs input probability for 0% and 20% 

variations in MTJ diameter. This example shows multiplication of two 

input bit-streams via AND logic in SC-CRAM for research STT MTJs. 
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for output probability vs input probability for multiplication via 

AND logic in SC-CRAM using research STT MTJs for 0% 

noise and 20% noise, which illustrates how MSE was calculated. 

𝑀𝑆𝐸 =
1

𝑁𝑃𝑇𝑆
∑ (𝑌𝐸𝑋𝑃,𝑖 − 𝑌𝐶𝐴𝐿𝐶,𝑖)

2

𝑁𝑃𝑇𝑆

𝑖=1

                (9) 

IV. RESULTS 

A. Influence of device variations 

Figures 6(a) – 6(f) show the results for MSE calculations for 

MTJ device variations (σRMTJ) between 0% to 30%. MSE for 

multiplication via AND logic is shown in Fig. 6(a). These 

results show that the projected SOT and STT MTJs are the most 

resilient to MTJ variations, where MSE < 10-4 even when σRMTJ 

= 30%. Research SOT and STT MTJs will maintain an 

acceptable MSE < 10-3 when σRMTJ < 20%. However, the 

industry STT MTJs had the worst performance at both low and 

high σRMTJ. Recall that the projected SOT and STT MTJs both 

have a TMR ratio of 200% whereas the industry STT MTJs 

have a TMR ratio of 84%. These results show that the accuracy 

and resiliency to device variations for multiplication using the 

AND logic are highly dependent on the TMR ratio. 

The MSE calculations for scaled addition via MUX are 

shown in Fig. 6(b). These results show that the MSE is low 

when σRMTJ is low, but increases rapidly as σRMTJ increases. 

This means that the results for scaled addition are more 

susceptible to variations than for multiplication. One possible 

explanation is that the output accuracy is dependent on the 

accuracy of the bit-stream generated from the selector (S) MTJ. 

The accuracy of the output will vary if output probability of S 

deviates from 50%. However, the MSE is still lowest for 

projected SOT and STT MTJs, where MSE < 10-3 for σRMTJ up 

to 20%. 

Figure 6(c) shows that for scaled division via a JK flip flop, 

the MSE < 10-4 for σRMTJ up to 10% or 15% for all categories 

except for industry STT MTJs. Furthermore, the research and 

projected STT MTJs show that most resiliency for σRMTJ < 20%. 

However, the MSE spikes above 10-3 for σRMTJ = 20%. These 

results illustrate that device variations have a much stronger 

impact on accuracy as the number of consecutive NAND gates 

increases. 

Figure 6(d) shows that the behavior of MSE with σRMTJ for 

absolute valued subtraction via XOR logic is similar to that of 

scaled division. These results show that industry and research 

STT MTJs are the most susceptible to device variations. For the 

other 4 categories are less than 10-3 for σRMTJ < 25%. 

Furthermore, the projected STT MTJs were the most resilient 

to device variations. 

The MSE calculations for the square root function are shown 

in Fig. 6(e). These results show that the MSE values are higher 

for the square root function than any other functions. This can 

 

Fig. 6. MSE vs MTJ dimension variation for (a) multiplication, (b) scaled addition, (c) scaled division, (d) absolute valued subtraction, (e) square 

root, and (f) exponential function in SC-CRAM. The results for the STT and SOT MTJs are shown as solid and dotted lines, respectively. The lines 

for the research, industrial, and projected MTJs are shown with blue circles, red triangles, and black squares, respectively.  
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be attributed to the fact that the square root function relies on 

two MTJs that generate constant bit-streams, C1 and C2, with 

probabilities of 18% and 67%, respectively. As with the scaled 

addition function, the accuracy of the output will vary when the 

output probabilities of C1 and C2 deviate from their desired 

values. At low σRMTJ, the research STT MTJs have the lowest 

MSE, however, the projected STT and SOT MTJs are the most 

resilient to MTJ variations where MSE < 10-3 for σRMTJ = 15%. 

Figure 6(f) shows the results of MSE with σRMTJ for the 

exponential function. For most of the MTJ categories, MSE 

increased steadily with σRMTJ from 10-5 for σRMTJ ≤ 10% to 

MSE ≈ 10-3 for σRMTJ = 30%. The two exceptions are the STT 

research MTJs and the projected SOT MTJs. The research STT 

MTJs showed the highest MSE for all σRMTJ values. 

Alternatively, the projected SOT MTJs showed the best 

resiliency to device variations, where MSE ≈ 10-4 at σRMTJ = 

30%. It should be noted that the exponential function has more 

perturb steps than the other five functions analyzed. Therefore, 

these results indicate that calculations in SC-CRAM have the 

best resiliency to variations in switching probability when using 

the projected SOT MTJs and the worst resiliency when using 

the research STT MTJs 

B. Comparison of energy consumption 

The bar plots in Fig. 7 show the energy consumption for each 

function in each MTJ category. These plots show that for all 

categories, multiplication consumes the least amount of energy 

and the exponential function consumes the most energy at 

around 10X more than multiplication. Scaled addition, scaled 

division and absolute valued subtraction functions all consume 

more energy than multiplication but less than the exponential 

function. This trend does not differ significantly between each 

MTJ category because it reflects the number of CRAM cells 

used and the number of logic steps required for each function.  

The energy consumption for STT research MTJs is about one 

order of magnitude larger than for STT industrial and projected 

MTJs for all functions. This can be attributed to both larger JC0 

and larger RA product for research STT MTJs when compared 

to industrial and projected STT MTJs. Both of these factors lead 

to larger voltages required for the perturb, logic, and reset steps. 

Additionally, the energy consumption for the industrial and 

projected STT MTJs is reduced further in comparison to the 

research STT MTJs by the fact that their switching energy is 

minimized at shorter pulses (recall table III). 

The results in Fig. 7 also shows that the energy consumption 

for research SOT MTJs is approximately 3X larger than for 

industrial SOT MTJs. This may seem counterintuitive since JC0 

is larger for the industrial SOT MTJs. However, there are two 

factors that cause the energy consumption in research SOT 

MTJs to increase when compared to industrial SOT MTJs. One 

is that the industrial SOT MTJs use shorter pulse widths for 

switching (recall table III) and the second is the smaller RA 

product in the MTJ pillars for the industrial MTJs. The 

projected SOT MTJs had the lowest energy consumption of the 

SOT categories, where the energy consumption was over one 

order of magnitude lower than the industrial SOT MTJs over 

two orders of magnitude lower than the research SOT MTJs. 

One key observation is that the energy consumption in the 

STT MTJs is significantly lower than the research and industrial 

SOT MTJs. There are two factors that cause this increase in 

energy consumption for the research and industrial SOT MTJs. 

One is the larger JC0 values, which leads to larger voltages for 

the perturb and reset steps. The second, and much more 

significant factor is the large RA products of the MTJ pillars for 

the research and industrial SOT MTJs. This increases the 

voltage required for the logic step since the resistance of the 

pillars is much larger than the resistance of the spin Hall 

channel. However, the energy consumption in the projected 

SOT MTJs is lower than any of the STT MTJ categories. This 

is because the logic voltages are reduced significantly for 

projected SOT MTJs because the RA product is much lower and 

the resistance of the BiSe spin Hall channel is much larger when 

compared to the research and projected SOT MTJs. For optimal 

performance of SOT-based SC-CRAM, the resistance of the 

 

Fig. 7. Energy consumption for the six arithmetic functions analyzed for all MTJ categories. 
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spin Hall channel should be equivalent to the resistance of the 

MTJ pillar. Furthermore, low RA product of the MTJ pillars is 

desired. 

C. Performance metrics in neuromorphic applications 

Figure 8 shows the total energy consumption for local image 

thresholding, object location, heart disaster prediction, and 

kernel density estimation for all MTJ categories. It should be 

noted that the analysis for number of CRAM cells and 

computation steps in SC-CRAM was done in our previous work 

[25] and will not change between the MTJ categories. The bar 

plots in Fig. 8 show that for each MTJ category, local image 

thresholding has the highest energy consumption followed by 

kernel density estimation, heart disaster prediction, and object 

location. This is simply a reflection on the number of CRAM 

cells required for each task. Furthermore, the trends observed 

in Fig. 8 follow similar trends to those observed in Fig. 7, where 

the research and industrial SOT MTJs have the largest energy 

consumption among the MTJ categories and the projected SOT 

MTJs have the lowest. 

One of the key observations from the results in Fig. 8 is that 

relative energy consumption for local image thresholding and 

kernel density estimation between SOT and STT MTJs is lower 

than the results in Fig. 7. In Fig. 7, the energy consumption for 

the projected SOT MTJs is approximately 1.05 – 1.3 X lower 

than for projected STT MTJs. However, in Fig. 8, the energy 

consumption for projected SOT MTJs is approximately 1.5 – 

1.6X lower than for projected STT MTJs for local image 

thresholding and kernel density estimation. This is because both 

of these tasks require a large number of NAND logic operations. 

For SOT MTJs, the energy consumption for NAND logic is the 

same for AND logic. However, for STT MTJs, the energy 

consumption for NAND logic is larger than for AND logic. The 

energy consumption is similar between STT and SOT MTJs for 

most arithmetic functions. However, these results show that the 

energy consumption in projected SOT MTJs decreases relative 

to the projected STT MTJs for larger scale tasks, particularly 

those involving NAND logic. 

V. DISCUSSION 

A. Explanation of key results 

The two sources of error that contribute to the increase in 

MSE with σRMTJ shown in Fig. 6(a-f) are errors in the logic 

operation and inaccurate switching probabilities during the 

perturb step. With no MTJ variations, the MSE should be 

minimal (<10-5) since the only source of error are small changes 

in switching probability. Note that this can be improved by 

increasing the bit-stream length. However, MTJ variations will 

change their properties, meaning that VB may fall outside the 

range of values outlined in table I. This will lead to logic errors 

since VB will either be too small and fail to switch the output 

MTJ for the proper input configuration or too large and will 

switch the MTJ for incorrect input configurations. The range of 

VB values for proper logic operations in CRAM increases as the 

TMR ratio of the MTJs increases. This explains why the 

projected SOT and STT MTJs were the most resilient to MTJ 

variations for most of the functions in Figs. 6(a) – 6(f) and the 

industry MTJs were the most sensitive to these variations. 

Perturb errors are relatively insignificant compared to logic 

errors, however, there are a few functions where perturb errors 

have a larger impact. Namely, scaled addition and square root 

function are more influenced by perturb errors. This is because 

these two functions rely on bit-streams that are generated 

separately from the input bit-streams with a constant, pre-

determined probability. Not only does this add additional 

sources of perturb errors, but it also changes the function being 

processed. For example, the square root function uses constant 

probabilities of 18% and 67% to process the function Y ~ X0.5. 

Changing the constant probabilities will change the function 

being processes. 

Another key result shown in the data in Fig. 6(a-f) is that 

variations had a larger influence on SOT MTJs than STT MTJs. 

 

 

Fig. 8. Energy consumption for the four neuromorphic computing applications analyzed for all MTJ categories. 
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Note that projected SOT MTJs have more resilience to 

variations than industry MTJs, they do not have more resilience 

to projected STT MTJs for most functions. In some cases, the 

research STT MTJs had better resilience to variations than the 

projected SOT MTJs. This is because, for SOT MTJs, device 

variations influence the diameter of the MTJ pillar as well as 

the width of the spin Hall channel whereas for STT MTJs, 

device variations only influence the diameter of the MTJ pillar. 

This additional source of variation for SOT MTJs means that 

VC0 changes more with device variations for SOT MTJs than 

for STT MTJs. This is because when the width of the spin Hall 

channel changes, RSHE changes accordingly. While JC0 remains 

the same, VC0 changes with RSHE which will drastically affect 

the SOT switching properties.  

There are 3 components that contribute to the total energy 

consumption in Fig. 7 and Fig. 8. These are the energy for the 

perturb step, reset step, and logic step. For the perturb and reset 

steps, the biggest contributing factors for the energy 

consumption are JC0 and switching speed. Having a low JC0 

along with a low RA product means that VC0 is low, therefore, 

the voltage pulse amplitudes for the perturb and reset steps. 

However, for the logic step, the resistance of the input MTJs 

relative to the resistance of the output is another factor that 

contributes to the energy consumption. If the resistance of the 

output is low relative to the resistance of the input MTJs, then 

the amplitude of the voltage pulse needs to increase accordingly. 

Figure 9 shows the breakdown of the total energy 

consumption for AND multiplication for all six MTJ categories. 

These results show that the breakdown is very similar between 

research, industrial, and projected STT MTJs, where the reset 

and logic steps each consume approximately 35-45% of the 

total energy consumption and the perturb step consumes around 

15-20%. This means that for STT MTJs, the reduction in total 

energy consumption almost entirely depends on reducing JC0 

and the RA product, which is confirmed by the results in Fig. 7. 

However, there are a few more factors to consider when 

analyzing the total energy consumption for SOT MTJs. Figure 

9 shows that the logic step consumes 95% of the total energy 

consumption for industry and research SOT MTJs. On the other 

hand, the logic step only consumes 44% of the total energy 

consumption for projected SOT MTJs. This is because the 

resistance of the MTJ pillars for the research and industry MTJs 

are approximately 40 kΩ to 100 kΩ, which is very high 

compared to the resistance of the SOT channel, which is around 

1.1 kΩ to 1.3 kΩ. Alternatively, for the projected SOT MTJs, 

the resistance of the MTJ pillars was around 3 kΩ in the P-state 

and 9 kΩ in the AP-state, which is on the same order of 

magnitude as the resistance of the SOT channel, which was ~8 

kΩ. The lower JC0 value and faster switching speed for 

projected SOT MTJs relative to research and industry SOT 

MTJs certainly are factors in reducing the total energy 

consumption. However, the results in Fig. 9 show that the 

biggest factor in reducing the total energy consumption in SOT 

CRAM is reducing the energy during the logic step. By 

reducing the RA product of the pillars while maintaining high 

SOT efficiency in the SOT channel, the total energy 

consumption can be significantly reduced.     

B. Outlook 

Our previous results showed that the energy consumption in 

SC-CRAM is on the same order of magnitude as that of 

conventional CRAM [25]. This is quite promising, considering 

the fact that the energy consumption in conventional CRAM is 

around 40X lower than for modern near memory processors 

 

 

Fig. 9. Breakdown of energy consumption between the reset, perturb, and logic steps for multiplication via AND logic for all MTJ categories. 
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[41]. In this study, we demonstrated that the energy 

consumption in SC-CRAM can be reduced even further by 

optimizing the intrinsic properties of the MTJ, including 

reducing JC0 and RA product of the pillar. Furthermore, utilizing 

the SOT switching mechanism in SC-CRAM may reduce the 

energy consumption even more, especially for large scale 

applications with large number of NAND operations. Another 

factor that was not focused on in this study but should be 

considered is that SC-CRAM benefits from the noise resiliency 

and robustness to variations associated with stochastic 

computing, however, in SC-CRAM, there is minimal sacrifice 

in computation delay and energy for stochastic bit generation 

since this process is embedded within the computation process. 

One of the potential challenges in achieving CRAM cells that 

utilize the SOT switching mechanism is to create SOT channels 

with high θSH (low JC0) along with pillars with low RA products. 

This is because the SOT materials with the largest θSH values 

are topological insulators, which typically have large 

resistivities. This creates potential problems when combining 

these channels with low RA pillars, since the SOT write current 

may be shunted into the MTJ pillar rather than contributing to 

SOT switching. It should be noted that despite this challenge, 

SOT switching is still preferred over STT switching for two 

reasons. One is that STT switching has limitations on switching 

speed and JC0. The second is that is less susceptible to 

breakdown from the write pulse the current direction is adjacent 

to the free layer rather than across the tunnel junction.  

Furthermore, there could be a few solutions to the potential 

for SOT current shunting. One is that a thin oxide layer could 

be inserted between the SOT channel and the free layer, which 

would drastically reduce shunting [56]. However, this would 

increase the RA product of the pillar, thus increasing the energy 

consumption during the logic step. Another option is to 

combine the STT and SOT mechanisms for each step. In 

previous studies, significant reduction in both switching energy 

and switching speed has been achieved with this strategy [52]. 

One method to combine STT and SOT is to use two bias 

terminals on a three-terminal device. However, this is not an 

attractive method for the purposes of SC-CRAM since an 

additional transistor will need to be added to every cell, thus 

increasing the total circuit area. Another method is to use a two 

terminal SOT device, which was done in ref. [48]. This strategy 

allows for the same reduction in switching energy and speed as 

the three terminal devices, but without adding any transistors to 

each CRAM cell. 

Lastly, another way that the performance of SC-CRAM could 

be improved is to use new switching mechanisms, e.g. utilizing 

the voltage controlled magnetic anisotropy (VCMA) [57] and 

the voltage controlled exchange coupling (VCEC) mechanism 

and its integration with SOT [58-59]. Previous studies have 

shown that VCEC switching can be achieved at current 

densities one order of magnitude lower than for STT switching 

[59]. Furthermore, our previous studies have shown that VCEC 

switching can be achieved at current densities as low as 103 

A/cm2 when combined with an SOT current [60]. This strategy 

was not investigated in this study since there are currently no 

experimental demonstrations that test the switching speed of the 

VCEC mechanism. However, SC-CRAM based on VCMA and 

VCEC switching should be investigated in future studies.          

VI. CONCLUSION 

SC-CRAM has the same advantages as any other stochastic 

computing scheme, which is noise resiliency and low number 

of logic gates. However, SC-CRAM has additional advantages 

since stochastic bit-stream generation and computation are 

performed in parallel. In this study, we analyzed the 

performance of SC-CRAM for both STT and SOT switching 

using metrics from data obtained from academic studies, 

current industrial standards, and projected metrics. Our 

calculations found that the accuracy of the output is dependent 

on the TMR ratio of the MTJ pillar for both STT and SOT 

switching. Additionally, we determined that SC-CRAM cells 

based on STT switching consume significantly less energy than 

cells based on SOT switching for MTJs with the current 

academic and industrial properties. This is primarily due to the 

large RA product of the MTJ pillars for SOT switching, 

therefore, large voltages are required to perform logic 

operations in SOT based SC-CRAM. Based on the projected 

performance metrics, the energy consumption for SOT CRAM 

cells can be reduced to levels below STT CRAM cells if the RA 

product of the MTJ pillar is minimized.     
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