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Abstract

Most digital circuits process information that is encoded as zeros and ones determin-

istically. For example, the arithmetic unit of a modern computer performs calculations

on deterministic integer or floating-point values represented in binary radix. However,

digital computation need not be deterministic. In this dissertation, we consider an al-

ternative paradigm: digital circuits that compute on stochastic sequences of zeros and

ones. Such circuits can implement complex arithmetic operations with very simple hard-

ware. For instance, multiplication can be performed with a single AND gate. Also they

are highly tolerant of soft errors (i.e., bit flips). In the first part of the dissertation, we

present a general method for synthesizing digital circuitry that computes on stochastic

bit streams. Our method can be used to synthesize arbitrary polynomial functions.

Through polynomial approximations, it can also be used to synthesize non-polynomial

functions. Experiments on polynomial functions and functions used in image process-

ing show that our method produces circuits that are highly tolerant of soft errors. The

accuracy degrades gracefully with the error rate. For applications that mandate simple

hardware, producing relatively low precision computation very reliably, our method is

a winning proposition.

A premise for the stochastic paradigm is the availability of stochastic bit streams

with the requisite probabilities. Physical random sources can be exploited to generate

such random bit streams. Generally, each source has a fixed bias and so provides bits

that have a specific probability of being one versus zero. If many different probability

values are required, it can be difficult or expensive to generate all of these directly from

physical sources. In the second part of the dissertation, we demonstrate novel techniques

for synthesizing combinational logic that transforms a set of source probabilities into

different target probabilities. We consider three scenarios in terms of whether the source
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probabilities are specified and whether they can be duplicated. We present solutions to

all of these three scenarios.

In the final part of the dissertation, we consider optimizing the circuits that compute

on stochastic bit streams. We focus on a fundamental problem pertaining to generating

probabilities: how to synthesize optimal two-level logic circuits to generate arbitrary

probability values from unbiased input probability values of 0.5? This motivates a

novel logic synthesis problem: find a Boolean function with exactly a given number

of minterms and having a sum-of-product expression with the minimum number of

products. A crucial step towards solving the problem is to determine whether there

exists a set of cubes to satisfy a given intersection pattern of these cubes and, if it

exists, to synthesize a set of cubes. We show a necessary and sufficient condition for

the existence of a set of cubes to satisfy a given intersection pattern. We also show that

the synthesis problem can be reduced to the problem of finding a non-negative solution

to a set of linear equalities and inequalities.
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Chapter 1

Introduction

Humans are accustomed to counting in a positional number system – decimal radix.

Nearly all computer systems operate on another positional number system – binary

radix. From the standpoint of representation, such positional systems are compact:

given a radix b, one can represent bn distinct numbers with n digits. Each choice of

the digits di ∈ {0, . . . , b − 1}, i = 0, . . . , n − 1, results in a different number N in

[0, . . . , bn − 1]:

N =
n−1∑
i=0

bidi.

However, from the standpoint of computation, positional systems impose a burden: for

each operation such as addition or multiplication, the signal must be “decoded,” with

each digit weighted according to its position. The result must be “re-encoded” back in

positional form. Any student who has designed a binary multiplier in a course on logic

design can appreciate all the complexity that goes into wiring up such an operation.

Consider instead digital computation that is based on a stochastic representation of

data: each real-valued number x (0 ≤ x ≤ 1) is represented by a sequence of random

bits, each of which has probability x of being one and probability 1 − x of being zero.

These bits can either be serial streaming on a single wire or in parallel on a bundle

of wires. When serially streaming, the signals are probabilistic in time, as illustrated

1



2

in Figure 1.1(a); when in parallel, they are probabilistic in space, as illustrated in

Figure 1.1(b). Throughout this dissertation, we frame the discussion in terms of serial

bit streams. However, our approach is equally applicable to parallel wire bundles.

Indeed, we have advocated this sort of stochastic representation for technologies such

as nanowire crossbar arrays [1].

(a) (b)

x = 3/8

x = 3/8

0, 1, 0, 1, 0, 0, 1, 0

0

1
0
1
0
0
1
0

Figure 1.1: Stochastic representation: (a) A stochastic bit stream; (b) A stochastic wire
bundle. A real value x in the unit interval [0, 1] is represented as a bit stream or a
bundle. For each bit in the bit stream or the bundle, the probability that it is one is x.

Consider the problem of designing digital circuits that operate on stochastic bit

streams. We focus on combinational circuits, that is to say, memoryless digital circuits

built with logic gates such as AND, OR, and NOT. For such circuits, suppose that we

supply stochastic bit streams as the inputs; we will observe stochastic bit streams at the

outputs. Accordingly, combinational circuits can be viewed as constructs that accept

real-valued probabilities as inputs and compute real-valued probabilities as outputs. An

illustration of this is shown in Figure 1.2. The circuit, consisting of an AND gate and

an OR gate, accepts ones and zeros and produces ones and zeros, as any digital circuit

does. If we set the input bits x1, x2 and x3 to be one randomly and independently

with specific probabilities, then we will get an output y that is one with a specific

probability. For instance, given input probabilities x1 = 1/2, x2 = 1 and x3 = 1/4, the

circuit in Figure 1.2 produces an output y with probability 5/8.1 The figure illustrates

computations with bit lengths of 8.
1 When we say “probability” without further qualification, we mean the probability of obtaining a

one.
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AND

1,0,0,1,0,1,1,0

X3

X1

Y
1,1,1,1,1,1,1,1

1,0,0,1,0,1,1,0

0,1,0,0,0,0,1,0

X2

OR

x1: 4/8

4/8

1,1,0,1,0,1,1,0

x2: 8/8 y: 5/8

x3: 2/8

Figure 1.2: An example of logical computation on stochastic bit streams, implementing
the arithmetic function y = x1x2 + x3 − x1x2x3. We see that, with inputs x1 = 1/2,
x2 = 1 and x3 = 1/4, the output is 5/8, as expected.

Compared to a binary radix representation, a stochastic representation is not very

compact. WithM bits, a binary radix representation can represent 2M distinct numbers.

To represent real numbers with a resolution of 2−M , i.e., numbers of the form a
2M

for

integers a between 0 and 2M , a stochastic representation requires a stream of 2M bits.

The two representations are at opposite ends of the spectrum: conventional binary

radix is a maximally compressed, positional encoding; a stochastic representation is an

uncompressed, uniform encoding.

A stochastic representation, although not very compact, has an advantage over bi-

nary radix in terms of error tolerance. Suppose that the environment is noisy: bit flips

occur and these afflict all the bits with equal probability. Compare the two represen-

tations for a fractional number of the form a
2M

for integers a between 0 and 2M . With

a binary radix representation, in the worst case, the most significant bit gets flipped,

resulting in a change of 2M−1

2M
= 1

2 . In contrast, with a stochastic representation, all the

bits in a stream of length 2M have equal weight. Thus, a single bit flip always results

in a change of 1
2M

, which is small in comparison.

With the stochastic representation, noise does not introduce more randomness. The

bit streams are random to begin with, biased to specific probability values. Rather,

noise distorts the bias, producing streams with different probabilities than intended. To

illustrate this, consider a stochastic bit stream X that encodes a value p. With a bit
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flip rate of ε, the probability of each bit of the noise-injected bit stream to be one is

p′ = (1− ε)P (X = 1) + εP (X = 0) = (1− ε)p+ ε(1− p) = ε+ (1− 2ε)p. (1.1)

Thus, with bit flip occurring, a number p in the stochastic representation is biased to a

number ε+ (1− 2ε)p, a change of (1− 2p)ε in the value. Such a change is bounded by ε.

Figure 1.3 visually demonstrates the fault tolerance of the stochastic approach. In

the figure, we compare the fault tolerance of the stochastic implementation to that of the

conventional implementation of a image processing application, the gamma correction

function. (See Example 6 for a detailed definition.) We illustrated the fault tolerance of

our stochastic implementation by randomly flipping a given percentage of input bits and

evaluating the output. For example, a 2% error rate means that we randomly flip 2%

of the input bits. We observed a dramatic improvement in fault tolerance, particularly

when the magnitude of errors is analyzed: with a 10% soft error injection rate, the

conventional circuit produces outputs that are more than 20% off over 37% the time.

The result: nearly unreadable images. In contrast, our stochastic circuit never produces

pixel values with errors larger than 20%.

A stochastic representation also has the advantage over binary radix in the amount

of hardware needed for arithmetic computation. Consider multiplication. Figure 1.4

shows a conventional design for a 3-bit carry-save multiplier, operating on binary radix-

encoded numbers. It consists of 9 AND gates, 3 half adders and 3 full adders, for a

total of 30 gates.2

In contrast, with a stochastic representation, multiplication can be implemented

with much less hardware: we only need one AND gate. Figure 1.5 illustrates the

multiplication of values that are represented by stochastic bit streams. Assuming that

the two input stochastic bit streams A and B are independent, the number represented
2 A half adder can be implemented with one XOR gate and one AND gate. A full adder can be

implemented with two XOR gates, two AND gates, and one OR gate.
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Original
Input Image

Conventional Implementation

Stochastic Implementation

(a) (b) (c) (d) (e)

Figure 1.3: Comparison of the fault tolerance of the stochastic implementation to that
of the conventional implementation of the gamma correction function. The images in
the top row are generated by a conventional implementation. The images in the bottom
row are generated by our stochastic implementation. Input error ratios are (a) 0%; (b)
1%; (c) 2%; (d) 5%; (e) 10%.

HA
a1

HA
b1

a0

b1

FA
a0

b2

a2 b0 a1 b0

a1
FA

b2

a2 b1

HAFA

a0 b0

c0

c1

c2

c3c4c5

a2 b2

a2 a1 a0 b2 b1 b0

c2 c1 c0c5 c4 c3

a b

c

Figure 1.4: Multiplication on a conventional binary representation: a carry-save mul-
tiplier, operating on 3-bit binary radix encoded inputs A and B. “FA” refers to a full
adder and “HA” refers to a half adder.
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by the output stochastic bit stream C is

c = P (C = 1) = P (A = 1 and B = 1) = P (A = 1)P (B = 1) = a · b. (1.2)

So the AND gate multiplies the two values represented by the stochastic bit streams.

In the figure, with bit streams of length 8, the values have a resolution of 1/8.

AND

A

B

1,1,0,1,0,1,1,1

1,1,0,0,1,0,1,0

1,1,0,0,0,0,1,0

b: 4/8

C

a: 6/8
c: 3/8

Figure 1.5: Multiplication on stochastic bit streams with an AND gate. Here the inputs
are 6/8 and 4/8. The output is 6/8× 4/8 = 3/8, as expected.

Why is multiplication so simple with a stochastic representation and so complex

with a conventional positional representation? Although compact, a positional repre-

sentation imposes a computational burden for arithmetic: for each operation we must,

in essence, “decode” the operands, weighting the higher order bits more and the lower

order bits less; then we must “re-encode” the result in weighted form. Since the stochas-

tic representation is uniform, no decoding and no re-encoding are required to operate

on the values.

We can perform operations other than multiplication with the stochastic represen-

tation. Consider addition. It is not feasible to add two probability values directly; this

could result in a value greater than one, which cannot be represented as a probability

value. However, we can perform scaled addition. Figure 1.6 shows a scaled adder op-

erating on real numbers in the stochastic representation. It consists of a multiplexer

(MUX), a digital construct that selects one of its two input values to be the output

value, based on a third “selecting” input value. For the multiplexer shown in Fig-

ure 1.6, S is the selecting input. When S = 1, the output C = A. Otherwise, when

S = 0, the output C = B. The Boolean function implemented by the multiplexer is
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C = (A ∧ S) ∨ (B ∧ ¬S).3 With the assumption that the three input stochastic bit

streams A, B, and S are independent, the number represented by the output stochastic

bit stream C is

c = P (C = 1) = P (S = 1 and A = 1) + P (S = 0 and B = 1)

= P (S = 1)P (A = 1) + P (S = 0)P (B = 1) = s · a+ (1− s) · b.
(1.3)

Thus, with this stochastic representation, the computation performed by a multiplexer

is the scaled addition of the two input values a and b, with a scaling factor of s for a

and 1− s for b.

B

A

MUX

1

0

C

S

a: 1/8

0,1,0,0,0,0,0,0

1,0,1,1,0,1,1,0

0,0,1,0,0,0,0,1

1,0,0,1,0,1,1,0

c: 4/8

b: 5/8

s: 2/8

Figure 1.6: Scaled addition on stochastic bit streams, with a multiplexer (MUX). Here
the inputs are 1/8, 5/8, and 2/8. The output is 2/8 × 1/8 + (1 − 2/8) × 5/8 = 4/8, as
expected.

1.1 Overview

The task of analyzing combinational circuitry operating on stochastic bit streams is

well understood [2]. For instance, it can be shown that, given an input x, an inverter

(i.e., a NOT gate) implements the operation 1− x. Given inputs x and y, an OR gate

implements the operation x + y − xy. Analyzing the circuit in Figure 1.2, we see that

it implements the function x1x2 + x3 − x1x2x3. Aspects such as signal correlations of

reconvergent paths must be taken into account. Algorithmic details for such analysis
3 When discussing Boolean functions, we will use ∧, ∨, and ¬ to represent logical AND, OR, and

negation, respectively. We adopt this convention since we use + and · to represent arithmetic addition
and multiplication, respectively.



8

were first fleshed out by the testing community [3]. They have also found mainstream

application for tasks such as timing and power analysis [4, 5].

In Chapter 3, we explore the more challenging task of synthesizing logical computa-

tion on stochastic bit streams that implements the functionality that we want. We have

developed a general method for synthesizing arbitrary univariate polynomial functions

on stochastic bit streams. A necessary condition is that the target polynomial maps the

unit interval onto the unit interval. Our major contribution is to show that this condition

is also sufficient: we provide a constructive method for implementing any polynomial

that satisfies this condition. Our method is based on some novel mathematics for ma-

nipulating polynomials in a special form called a Bernstein polynomial. We introduce

the definition and the related properties of Bernstein polynomials in Chapter 2.

A premise for the stochastic paradigm is that we have access to input stochastic bit

streams with desired probabilities. Physical sources of randomness can be exploited to

generate such bit streams [6]. Generally, each source has a fixed bias and so provides

bits that have a specific probability of being one versus zero. For schemes that generate

stochastic bit streams from physical sources, a significant limitation is the cost of gener-

ating different probability values. For instance, if each probability value is determined

by a specific voltage level, different voltage levels are required to generate different

probability values. For an application that requires many different values, many volt-

age regulators are required; this might be prohibitively costly in terms of area as well

as power consumption [7].

In Chapter 4, we propose a strategy to mitigate this issue: we demonstrate a method

for synthesizing combinational logic that transforms a set of source probabilities into

different target probabilities. We consider three scenarios in terms of whether the source

probabilities are specified and whether they can be duplicated.

In the case that the source probabilities are not specified and can be duplicated,

we provide a specific choice, the set {0.4, 0.5}; we show how to synthesize logic that

transforms probabilities from this set into arbitrary decimal probabilities. Figure 1.7
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shows a circuit synthesized by our algorithm to realize the decimal output probability

0.119 from the input probabilities 0.4 and 0.5. The circuit consists of AND gates and

inverters: each AND gate performs a multiplication of its inputs and each inverter

performs a one-minus operation of its input.

AND

AND

AND

AND

AND

AND

0.4
0.6

0.5

0.3
0.7

0.4

0.5
0.2

0.14

0.5

0.5

0.4
0.6

0.3

0.15

0.85

0.119

Figure 1.7: A circuit synthesized by our algorithm to realize the decimal output prob-
ability 0.119 from the input probabilities 0.4 and 0.5.

In the case that the source probabilities are specified and cannot be duplicated, we

provide two methods for synthesizing logic to transform them into target probabilities.

The first method is based on linear 0-1 programming and gives an optimal approximation

to the targe probability. The second method is a greedy constructive method and gives

a suboptimal result.

In the case that the source probabilities are not specified, but once chosen cannot

be duplicated, we provide an optimal choice of the set of source probabilities.

Area is an important concern in digital circuit design. By reducing the silicon area,

the manufacturing cost of the circuit is reduced and so is the power dissipation. Circuits

operating on stochastic bit streams will also benefit from small area. In Chapter 5,

we further consider the problem of optimizing the area of circuits that compute on

stochastic bit streams. We start with a fundamental problem pertaining to generating

probabilities: synthesizing a circuit to generate an arbitrary given probability value

from a set of independent inputs of an unbiased probability value of 0.5. We focus on

synthesizing two-level logic circuit. This motivates a novel problem in logic synthesis:
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find a Boolean function with exactly a given number of minterms and having a sum-

of-product expression with the minimum number of products. We call this problem

arithmetic two-level minimization problem.

A crucial step towards solving the arithmetic two-level-minimization problem is to

determine whether there exists a set of cubes to satisfy a given intersection pattern of

these cubes and, if it exists, to synthesize a set of cubes. We call this problem λ-cube

intersection problem. Here an intersection pattern of a set of cubes refers to a set of

numbers, each of which specifies the number of the minterms covered by the intersection

of one of the subsets of the set of cubes. In Chapter 5, we provide a rigorous mathematic

treatment to the λ-cube intersection problem and derive a necessary and sufficient con-

dition for the existence of a set of cubes to satisfy the given intersection pattern. The

problem reduces to checking whether a set of linear equalities and inequalities has a

non-negative integer solution.



Chapter 2

Bernstein Polynomials

In this chapter, we introduce a specific type of polynomial that we use, namely

Bernstein polynomials [8].

Definition 1

A Bernstein polynomial of degree n, denoted as Bn(t), is a polynomial expressed in

the following form [9]:
n∑
k=0

βk,nbk,n(t), (2.1)

where each βk,n, k = 0, 1, . . . , n, is a real number and

bk,n(t) =
(
n

k

)
tk(1− t)n−k.1 (2.2)

The coefficients βk,n are called Bernstein coefficients and the polynomials

b0,n(t), b1,n(t), . . . , bn,n(t) are called Bernstein basis polynomials of degree n. �

2.1 Properties of Bernstein Polynomials

We list some pertinent properties of Bernstein polynomials.

1. The positivity property:
1 Here

(
n
k

)
denotes the binomial coefficient “n choose k.”

11
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For all k = 0, 1, . . . , n and all t in [0, 1], we have

bk,n(t) ≥ 0. (2.3)

2. The partition of unity property:

The binomial expansion of the left-hand side of the equality (t + (1 − t))n = 1

shows that the sum of all Bernstein basis polynomials of degree n is the constant

1, i.e.,
n∑
k=0

bk,n(t) = 1. (2.4)

3. Converting power-form coefficients to Bernstein coefficients:

The set of Bernstein basis polynomials b0,n(t), b1,n(t), . . . , bn,n(t) forms a basis of

the vector space of polynomials of real coefficients and degree no more than n [10].

Each power basis function tj can be uniquely expressed as a linear combination

of the n+ 1 Bernstein basis polynomials:

tj =
n∑
k=0

σjkbk,n(t), (2.5)

for j = 0, 1, . . . , n. To determine the entries of the transformation matrix σ, we

write

tj = tj(t+ (1− t))n−j

and perform a binomial expansion on the right hand side. This gives

tj =
n∑
k=j

(
k
j

)(
n
j

)bk,n(t),

for j = 0, 1, . . . , n. Therefore, we have

σjk =


(
k
j

)(
n
j

)−1
, for j ≤ k

0, for j > k.

(2.6)
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Suppose that a power-form polynomial of degree no more than n is

g(t) =
n∑
k=0

ak,nt
k (2.7)

and the Bernstein polynomial of degree n of g is

g(t) =
n∑
k=0

βk,nbk,n(t). (2.8)

Substituting Equations (2.5) and (2.6) into Equation (2.7) and comparing the

Bernstein coefficients, we have

βk,n =
n∑
j=0

aj,nσjk =
k∑
j=0

(
k

j

)(
n

j

)−1

aj,n. (2.9)

Equation (2.9) provide a means for obtaining Bernstein coefficients from power-

form coefficients.

4. Degree elevation:

Based on Equation (2.2), we have that for all k = 0, 1, . . . ,m,
1(

m+1
k

)bk,m+1(t) +
1(

m+1
k+1

)bk+1,m+1(t) = tk(1− t)m+1−k + tk+1(1− t)m−k

=tk(1− t)m−k =
1(
m
k

)bk,m(t),

or

bk,m(t) =

(
m
k

)(
m+1
k

)bk,m+1(t) +

(
m
k

)(
m+1
k+1

)bk+1,m+1(t)

=
m+ 1− k
m+ 1

bk,m+1(t) +
k + 1
m+ 1

bk+1,m+1(t).

(2.10)

Given a power-form polynomial g of degree n, for any m ≥ n, g can be uniquely

converted into a Bernstein polynomial of degree m. Suppose that the Bern-

stein polynomials of degree m and degree m + 1 of g are
m∑
k=0

βk,mbk,m(t) and

m+1∑
k=0

βk,m+1bk,m+1(t), respectively. We have

m∑
k=0

βk,mbk,m(t) =
m+1∑
k=0

βk,m+1bk,m+1(t). (2.11)
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Substituting Equation (2.10) into the left-hand side of Equation (2.11) and com-

paring the Bernstein coefficients, we have

βk,m+1 =


β0,m, for k = 0

k
m+1βk−1,m +

(
1− k

m+1

)
βk,m, for 1 ≤ k ≤ m

βm,m, for k = m+ 1.

(2.12)

Equation (2.12) provides a means for obtaining the coefficients of the Bernstein

polynomial of degree m+ 1 of g from the coefficients of the Bernstein polynomial

of degree m of g. We will call this procedure degree elevation.

2.2 Uniform Approximation and Bernstein Polynomials

with Coefficients in the Unit Interval

In this section, we present two of our major mathematical findings on Bernstein

polynomials. The first result pertains to uniform approximation with Bernstein poly-

nomials. We show that, given a power-form polynomial g, we can obtain a Bernstein

polynomial of degree m with coefficients that are as close as desired to the corresponding

values of g evaluated at the points 0, 1
m ,

2
m , . . . , 1, provided that m is sufficiently large.

This result is formally stated by the following theorem.

Theorem 1

Let g be a polynomial of degree n ≥ 0. For any ε > 0, there exists a positive integer

M ≥ n such that for all integers m ≥M and k = 0, 1, . . . ,m, we have∣∣∣∣βk,m − g( km
)∣∣∣∣ < ε,

where β0,m, β1,m, . . . , βm,m satisfy g(t) =
m∑
k=0

βk,mbk,m(t). �

Please see Appendix A for the proof of the above theorem.
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The second result pertains to a special type of Bernstein polynomials: those with

coefficients that are all in the unit interval. We are interested in this type of Bernstein

polynomials since we can show that such Bernstein polynomials can be implemented by

logical computation on stochastic bit streams. (See Chapter 3 for the details.)

Definition 2

Define U to be the set of Bernstein polynomials with coefficients that are all in the unit

interval [0, 1]:

U =

{
p(t) | ∃ n ≥ 1, 0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1, such that p(t) =

n∑
k=0

βk,nbk,n(t)

}
. �

The question we are interested in is: which (power-form) polynomials can be converted

into Bernstein polynomials in U?

Definition 3

Define the set V to be the set of polynomials which are either identically equal to 0 or

equal to 1, or map the open interval (0, 1) into (0, 1) and the points 0 and 1 into the

closed interval [0, 1], i.e.,

V = {p(t) | p(t) ≡ 0, or p(t) ≡ 1,

or 0 < p(t) < 1,∀t ∈ (0, 1) and 0 ≤ p(0), p(1) ≤ 1}. �

We prove that the set U and the set V are equivalent, thus giving a clear character-

ization of the set U .

Theorem 2

V = U. �

The proof of the above theorem utilizes Theorem 1. Please see Appendix B for the

proof.

We end this chapter with two examples illustrating Theorem 2. In what follows, we

will refer to a Bernstein polynomial of degree n converted from a polynomial g as “the
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Bernstein polynomial of degree n of g”. When we say that a polynomial is of degree n,

we mean that the power-form of the polynomial is of degree n.

Example 1

Consider the polynomial g(t) = 5
8 −

15
8 t+

9
4 t

2. It maps the open interval (0, 1) into (0, 1)

with g(0) = 5
8 and g(1) = 1. Thus, g is in the set V . Based on Theorem 2, we have

that g is in the set U . We verify this by considering Bernstein polynomials of increasing

degree.

• The Bernstein polynomial of degree 2 of g is

g(t) =
5
8
· b0,2(t) +

(
− 5

16

)
· b1,2(t) + 1 · b2,2(t).

Note that here the coefficient β1,2 = − 5
16 < 0.

• The Bernstein polynomial of degree 3 of g is

g(t) =
5
8
· b0,3(t) + 0 · b1,3(t) +

1
8
· b2,3(t) + 1 · b3,3(t).

Note that here all the coefficients are in [0, 1].

Since the Bernstein polynomial of degree 3 of g satisfies Definition 2, we conclude that

g is in the set U . �

Example 2

Consider the polynomial g(t) = 1
4 − t + t2. Since g(0.5) = 0, thus g is not in the set

V . Based on Theorem 2, we have that g is not in the set U . We verify this. By

contraposition, suppose that there exist n ≥ 1 and 0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1 such that

g(t) =
n∑
k=0

βk,nbk,n(t).

Since g(0.5) = 0, therefore,
n∑
k=0

βk,nbk,n(0.5) = 0. Note that for all k = 0, 1, . . . , n,

bk,n(0.5) > 0. Thus, we have that for all k = 0, 1, . . . , n, βk,n = 0. Therefore, g(t) ≡ 0,

which contradicts the original assumption about g. Thus, g is not in the set U . �



Chapter 3

Synthesizing Arithmetic

Functions

In Chapter 1, we demonstrate that logical computation on stochastic bit streams

has several advantages such as fault-tolerance and simple hardware design. Given these

advantages, we are interested in how we can broadly utilize logical computation on

stochastic bit streams. We consider combinational circuits. Since both its inputs and

outputs are treated as probabilities, a combinational circuit operating on stochastic bit

streams implements an arithmetic function. The task of analyzing the output function is

well understood [2]. In this chapter, we focus on the synthesis aspect: given an arbitrary

arithmetic function, how can we design a combinational circuit operating on stochastic

bit streams to implement that function?

3.1 Analysis of Logical Computation on Stochastic Bit

Streams

In the introduction, we showed that an AND gate implements multiplication on

stochastic bit streams; a multiplexer implements scaled addition. In general, what sort

17
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of mathematical function does logical computation on stochastic bit streams implement?

In this section, we will show that it implements a multivariate polynomial with integer

coefficients. The degree of each variable is at most one, i.e., there are no terms with

variables raised to the power of two, three or higher.

To see this, suppose that we have combinational logic that realizes the Boolean

function Y = f(X1, X2, . . . , Xn) and that for i = 1, . . . , n, the input Xi is a stochastic

bit stream where each bit has probability xi of being one. Equivalently, each input Xi

can be viewed as a random Boolean variable that has probability xi of being one, i.e.,

P (Xi = 1) = xi. Then the probability of Xi being zero is P (Xi = 0) = 1 − xi. With

the inputs being random Boolean variables, the output of combinational logic is also a

random Boolean variable. Assume that the output Y has probability y of being one,

i.e., P (Y = 1) = y. The computation implements a function describing the relation

between the output probability y and the input probabilities x1, x2, . . . , xn. Note that y

is the sum of the probability of occurrence of all combinations of input values for which

the Boolean function evaluates to 1. That is,

y = P (Y = 1) =
∑

(a1,...,an)∈{0,1}n:
f(a1,...,an)=1

P (X1 = a1, X2 = a2, . . . , Xn = an).

With the assumption that the input random variables X1, X2, . . . , Xn are independent,

we further have

y =
∑

(a1,...,an)∈{0,1}n:
f(a1,...,an)=1

(
n∏
k=1

P (Xk = ak)

)
. (3.1)

Since P (Xi = ai) is either xi or 1 − xi, depending on the value of ai in the given

combination, it is easily seen that y is a multivariate polynomial on the arguments

x1, x2, . . . , xn. Moreover, if we expand Equation (3.1) into a power form, each product

term has an integer coefficient. In all the product terms, the degree of each variable is

at most one.

Thus, we have the following theorem describing the general form of a function im-

plemented by computation on stochastic bit streams.
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Theorem 3

Logical computation on stochastic bit streams implements a multivariate polynomial of

the form

y = F (x1, x2, . . . , xn) =
1∑

i1=0

· · ·
1∑

in=0

(
αi1...in

n∏
k=1

xikk

)
, (3.2)

where the αi1...in ’s are integer coefficients. �

Example 3

Suppose that a combinational circuit implements the Boolean function Y = (X1∨X2)∧

X3. Its truth table is shown in Table 3.1. Consider the computation performed by this

combinational circuit on stochastic bit streams. Based on the truth table, we have

y = P (Y = 1)

= P (X1 = 0, X2 = 1, X3 = 1) + P (X1 = 1, X2 = 0, X3 = 1)

+ P (X1 = 1, X2 = 1, X3 = 1)

= (1− x1)x2x3 + x1(1− x2)x3 + x1x2x3

= x1x3 + x2x3 − x1x2x3.

(3.3)

This function is an integer-coefficient multivariate polynomial on the variables x1, x2,

and x3. In all the product terms, the degree of each variable is at most one. �

3.2 Stochastically Computable Polynomials

Computation on stochastic bit streams generally implements a special type of mul-

tivariate polynomial on input arguments, as was shown by Theorem 3. If we associate

some of the xi’s of the polynomial F (x1, x2, . . . , xn) in Equation (3.2) with real con-

stants in the unit interval and the others with a common variable t, then the function

F becomes a real-coefficient univariate polynomial g(t). With different choices of the

original Boolean function f and different settings of the probabilities of the xi’s, we get
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Table 3.1: A truth table for the Boolean function Y = (X1 ∨X2) ∧X3.

X1 X2 X3 Y

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

different polynomials g(t). We call a univariate polynomial g(t) obtained in this way

stochastically computable.

Definition 4

A univariate polynomial g(t) is stochastically computable if it can be realized by

a combinational circuit computing on stochastic bit streams, with some input streams

representing the variable probability t and the other input streams representing constant

probabilities. �

Example 4

Consider the combinational circuit in Example 3. The multivariate polynomial it com-

putes on stochastic bit streams is y = x1x3 + x2x3 − x1x2x3. If we set the probabilities

of the input bit streams as x1 = x2 = t, and x3 = 0.8, then the circuit implements the

polynomial g(t) = 1.6t − 0.8t2. If we set the probabilities of the input bit streams as

x1 = x2 = x3 = t, then the circuit implements the polynomial g(t) = 2t2 − t3. There-

fore, both the polynomial 1.6t − 0.8t2 and the polynomial 2t2 − t3 are stochastically

computable. �

In the rest of this chapter, we focus on univariate polynomial. When we say “a

polynomial,” we mean a univariate polynomial. For convenience, we give the following

definition.
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Definition 5

Define the set W to be the set of stochastically computable polynomial. �

The first question that arises is: what kind of polynomial is stochastically com-

putable? It is equivalently to ask what polynomials are in the set W . In this chapter,

we will demonstrate that W = V , where V is defined in Definition 3. First, we will

show W ⊆ V .

Theorem 4

W ⊆ V. �

Proof. The constant polynomial 0 and 1 can be trivially implemented by logical

computation on stochastic bit streams. Thus, these two polynomials are in the set W .

From the definition of the set V , they are also in the set V .

Now consider any polynomial g ∈W such that g 6≡ 0 and g 6≡ 1. We will show that

for all 0 < t < 1, 0 < g(t) < 1 and 0 ≤ g(0), g(1) ≤ 1. Thus, by the definition of V , we

have g ∈ V .

Since g is stochastically computable, then given any 0 ≤ t ≤ 1, g(t) must evaluate

to a probability value. In other words, for all 0 ≤ t ≤ 1, we have 0 ≤ g(t) ≤ 1. We only

need to prove that for all 0 < t < 1, g(t) 6= 0 and g(t) 6= 1. We prove this by the way

of contraposition. Suppose that these exists a 0 < t∗ < 1 such that g(t∗) = 0 or 1.

There exists a combinational circuit with the least number of inputs to implement

the polynomial g on stochastic bit streams. Consider this combinational circuit. Let its

Boolean function be f(X1, X2, . . . , Xn). Let the multivariate polynomial that the circuit

computes on stochastic bit streams be F (x1, x2, . . . , xn). Without loss of generality, we

can assume that we set x1, x2, . . . , xm(m ≤ n) to be real constants c1, c2, . . . , cm and

xm+1, xm+2, . . . , xn to be a variable t. In other words, g(t) = F (c1, . . . , cn, t, . . . , t).

We claim that c1, . . . , cm ∈ (0, 1). Indeed, if, say c1 is either 0 or 1, then the input

X1 of the combinational circuit is a deterministic zero or a deterministic one. Thus, we
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can simplify the original combinational circuit by removing one input. This contradicts

our assumption that the combinational circuit is the one with the least number of inputs

to implement the polynomial g.

From Equation (3.1), we have

g(t∗) =
∑

(a1,...,an)∈{0,1}n:
f(a1,...,an)=1

(
n∏
k=1

P (Xk = ak)

)
, (3.4)

where

P (Xk = 1) =


ck, for 1 ≤ k ≤ m

t∗, for m < k ≤ n,

and

P (Xk = 0) =


1− ck, for 1 ≤ k ≤ m

1− t∗, for m < k ≤ n.

Since c1, . . . , cm ∈ (0, 1) and t∗ ∈ (0, 1), we have that for all (a1, . . . , an) ∈ {0, 1}n,

n∏
k=1

P (Xk = ak) > 0.

We distinguish two cases of g(t∗).

1. The case where g(t∗) = 0. Then the Boolean function f must be a constant 0. Oth-

erwise, there exists a n-tuple (a∗1, . . . , a
∗
n) ∈ {0, 1}n such that f(a∗1, . . . , a

∗
n) = 1.

Consequently, the right-hand side of Equation (3.4) is larger than zero, contra-

dicting that g(t∗) = 0. Since the Boolean function f is a constant 0, then the

polynomial g is a constant polynomial 0, which contradicts our initial assumption

that g 6≡ 0.

2. The case where g(t∗) = 1. Then the Boolean function f must be a constant 1.

Otherwise, there exists a n-tuple (a∗1, . . . , a
∗
n) ∈ {0, 1}n such that f(a∗1, . . . , a

∗
n) = 0.
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Then we have

g(t∗) =
∑

(a1,...,an)∈{0,1}n:
f(a1,...,an)=1

(
n∏
k=1

P (Xk = ak)

)

<
∑

(a1,...,an)∈{0,1}n

(
n∏
k=1

P (Xk = ak)

)
= 1,

contradicting that g(t∗) = 1. Since the Boolean function f is a constant 1, then the

polynomial g is a constant polynomial 1, which contradicts our initial assumption

that g 6≡ 1.

Thus, we have proved that for all 0 < t < 1, g(t) 6= 0 and g(t) 6= 1. In conclusion,

for any polynomial g ∈W , we have shown that g ∈ V . Therefore, W ⊆ V . �

Remark: Theorem 4 essentially states a necessary condition for a polynomial g to be

stochastically computable: g is a constant polynomial 0, a constant polynomial 1, or a

polynomial that maps the open interval (0, 1) into itself and maps the points 0 and 1

into the closed interval [0, 1].

3.3 Synthesizing Bernstein Polynomials with Coefficients

in the Unit Interval

In this section, we will show that U ⊆W . In other words, any Bernstein polynomial

that has all the coefficients in the unit interval is stochastically computable [11].

Consider an arbitrary Bernstein polynomial with all the coefficients in the unit

interval

Bn(t) =
n∑
i=0

βi,nbi,n(t), (3.5)

where for all 0 ≤ i ≤ n, βi,n ∈ [0, 1]. We can implement the Bernstein polynomial with

the construct shown in Figure 3.1.
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+

X1
X2

Xn

MUX

Z0

Z1

Zn

Y

Ʃi Xi

...

P(Xi = 1) = t

P(Zi = 1) = βi,n

...

0

1

n

Figure 3.1: Combinational logic that implements a Bernstein polynomial with all
coefficients in the unit interval. In order to implement the Bernstein polynomial
Bn(t) =

∑n
i=0 βi,nbi,n(t), we set the inputs X1, . . . , Xn to be independent stochastic

bit streams, each representing the probability t, and the inputs Z0, . . . , Zn to be in-
dependent stochastic bit streams with probability equal to the Bernstein coefficients
β0,n, . . . , βn,n, respectively.

The block labeled “+” in Figure 3.1 has n inputs X1, . . . , Xn and dlog2(n + 1)e

outputs. It consists of combinational logic that computes the weight of the inputs, that

is to say, it counts the number of ones in the n Boolean inputs X1, . . . , Xn, produc-

ing a binary radix encoding of this count. We will call this an n-bit Boolean “weight

counter.” The multiplexer (MUX) shown in the figure has “data” inputs Z0, . . . , Zn and

the dlog2(n + 1)e outputs of the weight counter as the selecting inputs. If the binary

radix encoding of the outputs of the weight counter is k (0 ≤ k ≤ n), then the output

Y of the multiplexer is set to Zk.

Figure 3.2 gives a simple design for an 8-bit Boolean weight counter based on a tree

of adders. The eight inputs are grouped into 4 pairs and each pair is fed into a 1-bit

adder, which gives a 2-bit sum as the output. The 4 sets of outputs of the 1-bit adders

are further grouped into 2 pairs and each pair is fed into a 2-bit adder, which gives a

3-bit sum as the output. Finally, the pair of outputs of the 2-bit adders are fed into a

3-bit adder, which gives a 4-bit sum as the output, equal to the ones among the eight

inputs. An n-bit Boolean weight counter can be implemented in a similar way.

In order to implement the Bernstein polynomial Bn(t) =
∑n

i=0 βi,nbi,n(t), we set

the inputs X1, . . . , Xn to be independent stochastic bit streams representing variable
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X6

X5

X4

X3

2
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2

2

3

3

S3...S0
4

X2

Figure 3.2: The implementation of an 8-bit Boolean weight counter.

probability t. Equivalently, X1, . . . , Xn can be viewed as independent random Boolean

variables that have the same probability t of being one. The probability that the count

of the number of ones among the Xi’s is k (0 ≤ k ≤ n) is given by the binomial

distribution:

P

(
n∑
i=1

Xi = k

)
=
(
n

k

)
tk(1− t)n−k = bk,n(t). (3.6)

We set the inputs Z0, . . . , Zn to be independent stochastic bit streams with prob-

ability equal to the Bernstein coefficients β0,n, . . . , βn,n, respectively. Notice that we

can represent βi,n with stochastic bit streams because we assume that 0 ≤ βi,n ≤ 1.

Equivalently, we can view Z0, . . . , Zn as n + 1 independent random Boolean variables

that are one with probabilities β0,n, . . . , βn,n, respectively.

The probability that the output Y is one is

y = P (Y = 1) =
n∑
k=0

(
P

(
Y = 1|

n∑
i=1

Xi = k

)
P

(
n∑
i=1

Xi = k

))
. (3.7)

Since the multiplexer sets Y equal to Zk, when
∑n

i=1Xi = k, we have

P

(
Y = 1|

n∑
i=1

Xi = k

)
= P (Zk = 1) = βk,n. (3.8)

Thus, from Equations (3.5), (3.6), (3.7), and (3.8), we have

y =
n∑
k=0

βk,nbk,n(t) = Bn(t). (3.9)
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We conclude that the circuit in Figure 3.1 implements the given Bernstein polynomial

with all coefficients in the unit interval. Since the given Bernstein polynomial is an

arbitrary one in the set U . We have the following result.

Theorem 5

U ⊆W. �

Example 5

Figure 3.3 shows a circuit that implements the Bernstein polynomial

g(t) =
5
8
· b0,3(t) + 0 · b1,3(t) +

1
8
· b2,3(t) + 1 · b3,3(t),

converted from the power-form polynomial g(t) in Example 1. The function is evaluated

at t = 1/2. The stochastic bit streams X1, X2 andX3 are independent, each representing

the probability t = 1/2. The stochastic bit streams Z0, . . . , Z3 represent the probability

values 5
8 , 0, 1

8 , and 1, respectively. As expected, the computation produces the correct

output value: g(1/2) = 1/4. �

0,0,0,1,1,0,1,1 (1/2)

1,0,1,1,0,0,1,0 (1/2)

1,1,0,1,1,0,0,0 (1/2)

1,0,1,1,0,1,1,0 (5/8)

X1

X2

X3

2,1,1,3,2,0,2,1

0,0,0,0,0,0,0,0  (0)

0,0,1,0,0,0,0,0 (1/8)

1,1,1,1,1,1,1,1  (1)

MUX
0,0,0,1,0,1,0,0 (1/4)

Z0

Z1

Z2

Z3

Y

0

1

2

3

Figure 3.3: Computation on stochastic bit streams that implements the Bernstein poly-
nomial g(t) = 5

8 · b0,3(t) + 0 · b1,3(t) + 1
8 · b2,3(t) + 1 · b3,3(t) at t = 1/2. The stochastic

streams X1, X2, and X3 are independent, each with bits that have probability t = 1/2.
The bits of the stochastic streams Z0, Z1, Z2, and Z3 have probabilities that correspond
to the Bernstein coefficients.
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3.4 Synthesizing Power-Form Polynomials

In real applications, we encounter polynomials in power form. There are two ques-

tions we are interested in:

1. What type of power-form polynomial is stochastically computable?

2. How do we implement this type of polynomial by logical computation on stochastic

bit streams?

In this section, we give the answers to the above two questions.

Theorems 2, 4, and 5 establish relations among the sets U , V , and W : V = U ,

W ⊆ V , and U ⊆W . Combining these three relations, we immediately get

Corollary 1

W = V. �

The above corollary essentially answers the first question: a power-form polynomial

g is stochastically computable if and only if g is a constant polynomial 0, a constant

polynomial 1, or a polynomial that maps the open interval (0, 1) into itself and maps

the points 0 and 1 into the closed interval [0, 1].

In order to implement a power-form polynomial g in the set V by logical computation

on stochastic bit streams, we can first convert it into a Bernstein polynomial with all

the coefficients in the unit interval. This is guaranteed by the relation V = U . However,

we should note here that the degree of the equivalent Bernstein polynomial with all the

coefficients in the unit interval may be greater than the degree of the original polynomial.

Example 1 shows one instance. After we obtain the Bernstein polynomial with all the

coefficients in the unit interval, we can implement it by the circuit construct described

in Section 3.3.

In summary, given a power-form polynomial g(t) =
∑n

i=0 ai,nt
i that is in the set V ,

we can synthesize it by the following steps:
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1. Let m = n. Obtain β0,m, β1,m, . . . , βm,m from a0,n, a1,n, . . . , an,n by Equation (2.9).

2. Check to see if 0 ≤ βi,m ≤ 1, for all i = 0, 1, . . . ,m. If so, go to step 4.

3. Let m = m+ 1. Calculate β0,m, β1,m, . . . , βm,m from β0,m−1, β1,m−1, . . . , βm−1,m−1

based on Equation (2.12). Go to step 2.

4. Implement the Bernstein polynomial

Bm(t) =
m∑
i=0

βi,mbi,m(t).

with the generalized multiplexing construct in Figure 3.1.

The synthesis flow is summarized in Figure 3.4.

Obtain the Bernstein 

polynomial

of degree n. Let m = n.

Are all Bernstein 

coefficients 0 ≤ βi,m≤ 1?

Build generalized 

multiplexing circuit.

Let m = m + 1. 

Compute βi,m by 

degree elevation.

Yes

No

Figure 3.4: The synthesis flow to implement a power-form polynomial in the set V .

3.5 Synthesizing Non-Polynomial Functions

In real applications, of course, we often encounter non-polynomial functions, such

as trigonometric functions. In this section, we present a method for synthesizing log-

ical computation on stochastic bit streams that implements arbitrary functions. Our

strategy is to approximate them by Bernstein polynomials with coefficients in the unit



29

interval. We formulate the problem as follows:

Given g(t), a continuous function on the unit interval, and n, the degree of a Bernstein

polynomial, find real numbers βi,n, i = 0, . . . , n, that minimize∫ 1

0
(g(t)−

n∑
i=0

βi,nbi,n(t))2 dt, (3.10)

subject to

0 ≤ βi,n ≤ 1, for all i = 0, 1, . . . , n. (3.11)

Here we try to find the optimal Bernstein polynomial approximation by minimizing

an objective function, Equation (3.10), that measures the approximation error. This

is the square of the L2 norm on the difference between the original function g(t) and

the Bernstein polynomial Bn(t) =
∑n

i=0 βi,nbi,n(t). The integral is on the unit interval

because t, representing a probability value, is always in the unit interval. The constraints

in Equation (3.11) guarantee that the Bernstein coefficients are all in the unit interval

so that the function can be implemented by the generalized multiplexing construct in

Figure 3.1.

If we expand (3.10), then an equivalent objective function is

f(β) =
1
2
βTHβ + cTβ, (3.12)

where

β = [β0,n, . . . , βn,n]T ,

c = [−
∫ 1

0
g(t)b0,n(t) dt, . . . ,−

∫ 1

0
g(t)bn,n(t) dt]T ,

H =



∫ 1
0 b0,n(t)b0,n(t) dt . . .

∫ 1
0 b0,n(t)bn,n(t) dt∫ 1

0 b1,n(t)b0,n(t) dt . . .
∫ 1

0 b1,n(t)bn,n(t) dt
...

. . .
...∫ 1

0 bn,n(t)b0,n(t) dt . . .
∫ 1

0 bn,n(t)bn,n(t) dt

 .
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This optimization problem is, in fact, a constrained quadratic programming problem.

Its solution can be obtained using standard techniques.

Example 6

Gamma Correction. The gamma correction function is a nonlinear operation used

to code and decode luminance and tri-stimulus values in video and still-image systems.

It is defined by a power-law expression

Vout = V γ
in,

where Vin is normalized between zero and one [12]. We apply a value of γ = 0.45, which

is the value used in most TV cameras.

Consider the non-polynomial function

g(t) = t0.45.

We approximate this function by a Bernstein polynomial of degree 6. By solving the

constrained quadratic optimization problem, we obtain the Bernstein coefficients as:

β0,6 = 0.0955, β1,6 = 0.7207, β2,6 = 0.3476, β3,6 = 0.9988,

β4,6 = 0.7017, β5,6 = 0.9695, β6,6 = 0.9939. �

In a strict mathematical sense, logical computation on stochastic bit streams can

only implement functions that map the unit interval into the unit interval. However,

with scaling, it can implement functions that map any finite interval into any finite

interval. For example, the functions used in grayscale image processing are defined

on the interval [0, 255] with the same output range. If we want to implement such a

function y = g(t), we can instead implement the function y = h(t) = 1
256g(256t). Note

that the new function h(t) is defined in the unit interval and its output is also in the

unit interval.
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3.6 The Reconfigurable Architecture Based on Stochastic

Computing

In this section, we present a Reconfigurable architecture based on Stochastic Computing:

the ReSC architecture. As illustrated in Figure 3.5, it is composed of three parts:

the Randomizer unit generates stochastic bit streams; the ReSC unit processes these

bit streams; and the De-Randomizer unit converts the resulting bit streams into output

values. The architecture is reconfigurable in the sense that it can be used to compute

different functions by setting appropriate values of the constant registers.

3.6.1 The ReSC Unit

The ReSC unit is the kernel of the architecture. It is the generalized multiplexing

circuit described in Section 3.3, which implements a Bernstein polynomial with coeffi-

cients in the unit interval. As described in Section 3.5, we can use it to approximate

arbitrary arithmetic functions.

The probability t of the independent stochastic bit streams Xi is controlled by the

binary number CX in a constant register, as illustrated in Figure 3.5. The constant reg-

ister is a part of the Randomizer unit, discussed below. Similarly, stochastic bit streams

Z0, . . . , Zn representing a specified set of coefficients can be produced by configuring the

binary numbers CZi ’s in the constant registers.

3.6.2 The Randomizer Unit

The Randomizer unit is shown in Figure 3.6. It consists of a linear feedback shift

register (LFSR), a constant number register, and a comparator. The LFSR produces a

pseudorandom number R in each clock cycle. If R is strictly less than the number C

stored in the constant number register, then the comparator generates a one; otherwise,

it generates a zero.
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0,0,0,1,1,0,1,1 (1/2)

1,0,1,1,0,0,1,0 (1/2)

1,1,0,1,1,0,0,0 (1/2)

1,0,1,1,0,1,1,0 (5/8)

+

X1

X2

X3

2,1,1,3,2,0,2,1

0,0,0,0,0,0,0,0  (0)

0,0,1,0,0,0,0,0 (1/8)

1,1,1,1,1,1,1,1  (1)

MUX
0,0,0,1,0,1,0,0 (1/4)

Z0

Z1

Z2

Z3

Y

0

1

2

3

>

const

reg

LFSR

const

reg

>

Ramdomizer ReSC Unit

De-Randomizer
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CZ  , CZ2 3

CZ  , CZ0 1

Figure 3.5: A reconfigurable architecture based on stochastic computing. Here the
ReSC unit implements the target function y = 5

8 −
15
8 t+ 9

4 t
2 at t = 1/2.

LFSR

Constant Number 

Register

Comparator

>

Stochastic Bit Stream

0,1,0,1,1,0,1,...

Figure 3.6: The Randomizer unit.
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Assume that the LFSR has L bits. Accordingly, it generates repeating pseudoran-

dom numbers with a period of 2L − 1. We choose L so that 2L − 1 ≥ N , where N is

the length of the input random bit streams. This guarantees good randomness of the

input bit streams. The set of random numbers that can be generated by such an LFSR

is {1, 2, . . . , 2L − 1} and the probability that R equals a specific k in the set is

P (R = k) =
1

2L − 1
. (3.13)

Given a constant integer 1 ≤ C ≤ 2L, the comparator generates a one with proba-

bility

P (R < C) =
C−1∑
k=1

P (R = k) =
C − 1
2L − 1

. (3.14)

Thus, the set of probability values that can be generated by the Randomizer unit is

S = {0, 1
2L − 1

, . . . , 1}. (3.15)

Given an arbitrary value 0 ≤ p ≤ 1, we round it to the closest number p′ in S.

Hence, C is determined by p as

C = round(p(2L − 1)) + 1, (3.16)

where the function round(x) gives the nearest integer to x. The value p is quantized to

p∗ =
round(p(2L − 1))

2L − 1
(3.17)

In our stochastic implementation, we require different input random bit streams to

be independent. Therefore, LFSRs for generating different input random bit streams

are configured to have different feedback functions.

3.6.3 The De-Randomizer Unit

The De-Randomizer unit translates the result of the stochastic computation, ex-

pressed as a stochastic bit stream, back to a deterministic value using a counter. We
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set the length of the stochastic bit stream to be a power of 2, i.e., N = 2M , where M

is an integer. We choose the number of bits of the counter to be M + 1, so that we can

count all possible numbers of ones in the stream: from 0 to 2M . We treat the output of

the counter as a binary decimal number d = (cM .cM−1 . . . c0)2, where c0, c1, . . . , cM are

the M + 1 output bits of the counter.

Let the N bits of the output stochastic bit stream Y be Y (1), . . . , Y (N). Suppose

that each bit has probability y of being one. Then the mean value of the counter result

d is

E[d] = E

[
(cM . . . c0)2

2M

]
= E

[
1
N

N∑
τ=1

Y (τ)

]
=

1
N

N∑
τ=1

E[Y (τ)] = y, (3.18)

which is the value represented by the stochastic bit stream Y .

Compared to the kernel, the Randomizer and De-Randomizer units are expensive in

terms of the hardware resources required. Indeed, they dominate the area cost of the

architecture. We note that in many applications that involve analog to digital (A/D)

and digital to analog (D/A) conversion, a part of the A/D and D/A converters function

as the Randomizer and De-Randomizer units. For instance in sensors and embedded

systems, the inputs are obtained from physical measurements in analog form, so as

real-valued numbers. In the analog to digital conversion process, these real-valued

numbers are converted to binary radix. However, many A/D converters, such as sigma-

delta converters, naturally produce pulse streams of ones and zeros as an intermediate

form [13]. Such converters could easily be adapted to produce stochastic bit streams,

exploiting white noise for the encoding. This could potentially be much less costly than

a full conversion to binary radix, as that entails thresholding and sampling. Similarly,

at the outputs, digital to analog conversion could produce analog values directly from

stochastic bit streams.
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3.7 Error Analysis of the ReSC Architecture

By its very nature, logical computation on stochastic bit streams introduces uncer-

tainty into the computation. There are three sources of errors.

1. The error due to the Bernstein approximation: Since we use a Bernstein

polynomial with coefficients in the unit interval to approximate a function g(t),

there is an approximation error

e1 =

∣∣∣∣∣g(t)−
n∑
i=0

βi,nbi,n(t)

∣∣∣∣∣ . (3.19)

We could use the L2-norm to measure the average error as

e1avg =

(
1

1− 0

∫ 1

0
(g(t)−

n∑
i=0

βi,nbi,n(t))2 dt

)0.5

=

(∫ 1

0
(g(t)−

n∑
i=0

βi,nbi,n(t))2 dt

)0.5
(3.20)

The average approximation error e1avg only depends on the original function g(t)

and the degree of the Bernstein polynomial; e1avg decreases as n increases. For

all of the functions that we tested, a Bernstein approximation of degree of 6 was

sufficient to reduce e1avg to be below 10−3.

2. The quantization error:

As shown in Section 3.6.2, given an arbitrary value 0 ≤ p ≤ 1, we round it to

the closest number p∗ in S = {0, 1
2L−1

, . . . , 1} and generate the corresponding bit

stream. Thus, the quantization error for p is

|p− p∗| ≤ 1
2(2L − 1)

, (3.21)

where L is the number of bits of the LFSR.
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Due to the effect of quantization, we will compute
∑n

i=0 β
∗
i,nbi,n(t∗) instead of

the Bernstein approximation
∑n

i=0 βi,nbi,n(t), where β∗i,n and t∗ are the closest

numbers to βi,n and t, respectively, in the set S. Thus, the quantization error is

e2 =

∣∣∣∣∣
n∑
i=0

β∗i,nbi,n(t∗)−
n∑
i=0

βi,nbi,n(t)

∣∣∣∣∣ (3.22)

Define ∆βi,n = β∗i,n − βi,n and ∆t = t∗ − t. Then, using a first order approxi-

mation, the error due to quantization is

e2 ≈

∣∣∣∣∣
n∑
i=0

bi,n(t)∆βi,n +
n∑
i=0

βi,n
dbi,n(t)

dt
∆t

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=0

bi,n(t)∆βi,n + n

n−1∑
i=0

(βi+1,n − βi,n)bi,n−1(t)∆t

∣∣∣∣∣
Notice that since 0 ≤ βi,n ≤ 1, we have |βi+1,n−βi,n| ≤ 1. Combining this with

the fact that
∑n

i=0 bi,n(t) = 1 and |∆βi,n|, |∆t| ≤ 1
2(2L−1)

, we have

e2 ≤
1

2(2L − 1)

∣∣∣∣∣
n∑
i=0

bi,n(t)

∣∣∣∣∣+
n

2(2L − 1)

∣∣∣∣∣
n−1∑
i=0

bi,n−1(t)

∣∣∣∣∣ =
n+ 1

2(2L − 1)
. (3.23)

Thus, the quantization error is inversely proportional to 2L. We can mitigate this

error by increasing the number of bits L of the LFSR.

3. The error due to random fluctuations: Due to the Bernstein approximation

and the quantization effect, the output bit stream Y (τ) (τ = 1, 2, . . . , N) has

probability p∗ =
∑n

i=0 β
∗
i,nbi,n(t∗) that each bit is one. The De-Randomizer unit

returns the result

y =
1
N

N∑
τ=1

Y (τ). (3.24)

It is easily seen that E[y] = p∗. However, the realization of y is not, in general,

exactly equal to p∗. The error can be measured by the variation as

V ar[y] = V ar[
1
N

N∑
τ=1

Y (τ)] =
1
N2

N∑
τ=1

V ar[Y (τ)]

=
p∗(1− p∗)

N
.

(3.25)
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Since V ar[y] = E[(y−E[y])2] = E[(y−p∗)2], the error due to random fluctuations

is

e3 = |y − p∗| ≈
√
p∗(1− p∗)

N
. (3.26)

Thus, the error due to random fluctuations is inversely proportional to
√
N . In-

creasing the length of the bit stream will decrease the error.

The overall error is bounded by the sum of the above three error components:

e = |g(t)− y| ≤

∣∣∣∣∣g(t)−
n∑
i=0

βi,nbi,n(t)

∣∣∣∣∣
+

∣∣∣∣∣
n∑
i=0

βi,nbi,n(t)−
n∑
i=0

β∗i,nbi,n(t∗)

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=0

β∗i,nbi,n(t∗)− y

∣∣∣∣∣
= e1 + e2 + e3.

(3.27)

Note that we choose the number of bits L of the LFSRs to satisfy 2L − 1 ≥ N in

order to get non-repeating random bit streams. Therefore, we have

1
2L

<
1
N
� 1√

N

Combining the above equation with Equations (3.23) and (3.26), we can see that in our

implementation, the error due to random fluctuations will dominate the quantization

error. Therefore, the overall error e is approximately bounded by the sum of the error

e1 and e3, i.e.,

e ≤ e1 + e3.

We use the gamma correction function g(t) = t0.45 introduced in Example 6 to

demonstrate the three error components described above.

1. The error due to the Bernstein approximation. Figure 3.7 plots the error

due to the Bernstein approximation versus the degree of the approximation. The

error is measured by Equation (3.20). It shows that the error decreases as the

degree of the Bernstein approximation increases. For a choice of degree n = 6, the

error is approximately 4 · 10−3.
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Figure 3.7: The Bernstein approximation error versus the degree of the Bernstein ap-
proximation.

2. The quantization error. Figure 3.8 plots the quantization error versus the num-

ber of bits L of the LFSR. In the figure, the x-axis is 1/2L, where the range of L

is from 5 to 11. For different values of L, β∗i,n and t∗ in Equation (3.22) change ac-

cording to Equation (3.17). The quantization error is measured by Equation (3.22)

with the Bernstein polynomial chosen as the degree 6 Bernstein polynomial ap-

proximation of the gamma correction function. For each value of L, we evaluate

the quantization error on 11 sample points x = 0, 0.1, . . . , 0.9, 1. The mean, the

mean plus the standard deviation, and the mean minus the standard deviation of

the errors are plotted by a circle, a downward-pointing triangle, and a upward-

pointing triangle, respectively.

Clearly, the means of the quantization error are located near a line, which

means that the quantization error is inversely proportional to 2L. Increasing L

will decrease the quantization error.

3. The error due to random fluctuations. Figure 3.9 plots the error due to

random fluctuations versus the length N of the stochastic bit stream. In the figure,

the x-axis is 1/
√
N , where N is chosen to be 2m, with m = 7, 8, . . . , 13. The error

is measured as the average of 50 Monte Carlo simulations of the difference between
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Figure 3.8: The quantization error versus 1/2L, where L is the number of bits of the
LFSR. The circles, the downward-pointing triangles, and the upward-pointing triangles
represent the means, the means plus the standard deviations, and the means minus the
standard deviations of the errors on the sample points x = 0, 0.1, . . . , 0.9, 1, respectively.

the stochastic computation result and the quantized implementation of the degree

6 Bernstein polynomial approximation of the gamma correction function. To add

the quantization effect, we choose an LFSR of 10 bits. For each N , we evaluate

the error on 11 sample points x = 0, 0.1, . . . , 0.9, 1. The mean, the mean plus the

standard deviation, and the mean minus the standard deviation of the errors are

plotted by a circle, a downward-pointing triangle, and a upward-pointing triangle,

respectively.

The figure clearly shows that the means of the error due to random fluctuations

are located near a straight line. Thus, it confirms the fact that the error due to

random fluctuations is inversely proportional to
√
N . The error component could

be decreased by increasing the length of the stochastic bit stream.

3.8 Experimental Results

In this section, we present experimental results. We performed two sets of experi-

ments: the first set of experiments was on synthesizing polynomials and the second set

on synthesizing some common functions encountered in image processing. In both sets
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Figure 3.9: The error due to random fluctuations versus 1/
√
N , where N is the length of

the stochastic bit stream. The circles, the downward-pointing triangles, and the upward-
pointing triangles represent the means, the means plus the standard deviations, and the
means minus the standard deviations of the errors on sample points x = 0, 0.1, . . . , 0.9, 1,
respectively.

of experiments, we first compared the hardware cost of the conventional implementa-

tions to that of the stochastic implementations. Then, we compared the performance

of these two implementations on noisy input data.

The stochastic implementations (ReSC architecture) were written in Verilog, and

then synthesized, placed, and routed using Xilinx ISE 9.1.03i. A Xilinx Virtex-II Pro

XC2VP30-7-FF896 FPGA was chosen as the FPGA platform. The coefficients of the

ReSC unit for each test module were obtained from Matlab code. The conventional

implementations of the same test modules were manually translated into Verilog codes

and synthesized on the same FPGA platform.

3.8.1 Hardware Comparison for Implementing Polynomials

For a conventional implementation of a polynomial, we assume that the input con-

sists of M bits, encoding values in binary radix. The resolution of the computation in

binary radix is 2−M . A polynomial

g(t) =
n∑
i=0

ai,nt
i
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can be factorized as

g(t) = a0,n + t(a1,n + t(a2,n + · · ·+ t(an−1,n + tan,n))).

With such a factorization, we can evaluate the polynomial in n iterations. Each iteration

consists of an addition and a multiplication. Hence, for such an iterative calculation,

the hardware consists of an adder and a multiplier.

Two different designs were applied for the conventional implementation. The first

one is a combinational implementation: n adders and n multipliers are used to compute

the polynomial in one cycle. The second one is a sequential implementation. The

circuit is composed of an adder and a multiplier. All the coefficients of the polynomial

are sequentially fed into the circuit and the result is registered for the next stage. We

need n cycles to get the result when using the sequential implementation.

We built two types of stochastic implementations. The “Core” type implementation

only includes the ReSC unit. The “Full” type implementation includes the Randomizer

unit, the ReSC unit, and the De-Randomizer unit. In order to get the same resolution

as the conventional implementation, the length of the stochastic bit streams should be

N = 2M . Therefore, we need 2M cycles to get the result when using a serial stochastic

implementation.

In Table 3.2, we compare the area of the conventional implementations to that of the

stochastic implementations for polynomial degree n = 3, 4, 5, 6 and M = 7, 8, 9, 10, 12.

The area is measured in terms of the number of look-up tables (LUTs) used in FPGA.

The ratio columns of the table show the ratios of the area of the conventional sequential

implementation and the area of the stochastic implementation to that of the conven-

tional combinational implementation. The stochastic “Core” type implementation has

on average a 97.2% reduction of hardware usage compared to the conventional com-

binational implementation. The stochastic “Full” type implementation, which further

includes the Randomizer unit and the De-Randomizer unit, needs 14 times hardware

usage than the “Core” type implementation. However, it still has on average a 60%
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reduction of hardware cost compared with the conventional combinational implementa-

tion, and is comparable to the conventional sequential implementation.

3.8.2 Comparison of Performance on Noisy Input Data for

Implementing Polynomials

We compared the performance of conventional versus stochastic implementations of

polynomials when the input data is corrupted with noise. Suppose that the input data

of a conventional implementation has M = 10 bits. In order to have the same resolution,

the bit stream of a stochastic implementation should have 2M = 1024 bits. We chose

the error ratio ε of the input data to be 0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, and 0.1,

as measured by the fraction of random bit flips that occur.

To measure the impact of the noise, we performed two sets of experiments. In

the first, we chose the 6-th order Maclaurin polynomial approximation of 11 elementary

functions as our implementation target. We list these 11 functions in Table 3.3, together

with the degree of their 6-th order Maclaurin polynomials. Such Maclaurin approxima-

tions are commonly used in numerical evaluation of non-polynomial functions.

All of these Maclaurin polynomials evaluate to non-negative values for 0 ≤ t ≤ 1.

However, for some of these, the maximal evaluation on [0, 1] is greater than 1. Thus, we

scaled these polynomials by the reciprocal of their maximal value; this is a necessary

condition for a stochastic implementation. The scaling factors that we used are listed

in Table 3.3.

We evaluated each Maclaurin polynomial on 13 points: 0.2, 0.25, 0.3, . . . , 0.8. For

each error ratio ε, each Maclaurin polynomial, and each evaluation point, we simulated

both the stochastic and the conventional implementations 1000 times. We averaged

the relative errors over all simulations. Finally, for each error ratio ε, we averaged the

relative errors over all polynomials and all evaluation points.
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Table 3.2: Comparison of the area (in terms of LUTs) of the conventional implementa-
tion to that of the stochastic implementation of polynomials with different degrees and
resolutions.

Degree Length Conventional Stochastic
n M Combinational Sequential Core Full

Area Area Ratio Area Ratio Area Ratio
3 7 110 69 62.7%

4

3.6% 62 56.4%
3 8 137 81 59.1% 2.9% 69 50.4%
3 9 167 94 56.3% 2.4% 76 45.5%
3 10 200 108 54.0% 2.0% 83 41.5%
3 11 236 123 52.1% 1.7% 93 39.4%
3 12 275 139 50.5% 1.5% 93 33.8%
4 7 146 77 52.7%

6

4.1% 73 50.0%
4 8 180 90 50.0% 3.3% 81 45.0%
4 9 220 104 47.3% 2.7% 88 40.0%
4 10 265 119 44.9% 2.3% 97 36.6%
4 11 312 135 43.3% 1.9% 111 35.6%
4 12 370 152 41.1% 1.6% 110 29.7%
5 7 182 89 48.9%

8

4.4% 92 50.5%
5 8 225 99 44.0% 3.6% 101 44.9%
5 9 275 115 41.8% 2.9% 109 39.6%
5 10 331 131 39.6% 2.4% 117 35.3%
5 11 390 148 37.9% 2.1% 127 32.6%
5 12 461 166 36.0% 1.7% 134 29.1%
6 7 219 85 38.8%

11

5.0% 105 47.9%
6 8 275 99 36.0% 4.0% 118 42.9%
6 9 333 114 34.2% 3.3% 126 37.8%
6 10 396 131 33.1% 2.8% 136 34.3%
6 11 471 148 31.4% 2.3% 154 32.7%
6 12 556 166 29.9% 2.0% 158 28.4%

Average 44.4% 2.8% 40.0%
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Table 3.3: Sixth-order Maclaurin polynomial approximation of elementary functions.

function
degree of
Maclaurin

polynomials
scaling factor

sin(x) 5 1
tan(x) 5 0.6818

arcsin(x) 5 0.8054
arctan(x) 5 1
sinh(x) 5 0.8511
tanh(x) 5 1

arcsinh(x) 5 1
cos(x) 6 1

cosh(x) 6 0.6481
exp(x) 6 0.3679

ln(x+ 1) 6 1

In the second set of experiments, we randomly chose 100 Bernstein polynomials of

degree 6 with coefficients in the unit interval. With this specification, we were guar-

anteed that the polynomials can be implemented stochastically. We evaluated each on

10 points: 0, 1/9, 2/9, . . . , 1. We compiled similar statistics to that in the first set of

experiments.

Table 3.4 shows the average relative error of the stochastic implementation and the

conventional implementation versus different error ratios ε for both sets of experiments.

We plot the data for the experiments on Maclaurin polynomials in Figure 3.10 to give

a clear comparison.

When ε = 0, meaning that no noise is injected into the input data, the conventional

implementation computes without any error. However, due to the inherent variance,

the stochastic implementation produces a small relative error. However, with noise,

the relative error of the conventional implementation blows up dramatically as ε in-

creases. Even for small values, the stochastic implementation performs much better.
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Table 3.4: Relative error for the stochastic and conventional implementations of poly-
nomial computation versus the error ratio ε in the input data.

Maclaurin polynomial
Randomly chosen

polynomials
error relative error relative error relative error relative error
ratio of stochastic of conventional of stochastic of conventional
ε (%) (%) (%) (%)

0.0 2.63 0.00 2.92 0.00
0.001 2.62 0.68 3.06 11.1
0.002 2.64 1.41 3.27 21.3
0.005 2.73 3.36 4.25 53.9
0.01 3.01 6.75 6.05 106
0.02 3.89 12.8 9.93 208
0.05 7.54 28.9 21.4 494
0.1 13.8 51.2 39.2 948

This demonstrates that the stochastic representation is much more tolerant of noise

than the conventional binary radix representation.

In the data presented in Table 3.4, note that the relative error of the randomly

chosen polynomials computed by the conventional implementation is much larger than

that of the Maclaurin polynomials computed by the conventional implementation. The

explanation for this is that the randomly chosen polynomials have much larger power-

form coefficients. Bit flips on these coefficients dramatically change their values.

3.8.3 Hardware Comparison for Implementing Image Processing

Applications

We demonstrated the effectiveness of our method on a collection of image processing

benchmarks. We chose ten test cases [14, 15, 16]. These can be classified into three

categories: Gamma, RGB→XYZ, XYZ→RGB, XYZ→CIE-L*ab, and CIE-L*ab→XYZ are pop-

ular color-space converter functions in image processing; Geometric and Rotation are
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Figure 3.10: A plot of the relative error for the stochastic and the conventional imple-
mentations of Maclaurin polynomial computation versus the error ratio ε in the input
data.

geometric models for processing two-dimensional figures; and Example01 to Example03

are operations used to generate 3D image data sets.

Table 3.5 compares the hardware usage of the conventional implementations to that

of the stochastic implementations. Similar to the experiments on implementing poly-

nomials, we built two types of stochastic implementations: the “Core” and the “Full”

type implementations. On average, the stochastic “Core” type implementations achieve

a 89% reduction of LUT usage. If the peripheral Randomizer unit and De-Randomizer

unit are included, then the stochastic implementation achieves an 40% reduction of

hardware usage.

3.8.4 Comparison of Performance on Noisy Input Data for

Implementing Image Processing Applications

In this section, we compared the performance of the conventional implementation to

that of the stochastic implementation on noisy input data. We performed experiments

injecting soft errors. This consists of flipping a given percentage of the input bits of the

circuit and evaluating the output. For example, if 2% noise is injected, this implies that

2% of the total number of input bits of the circuit are chosen randomly and flipped.
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Table 3.5: Comparison of the hardware usage (in terms of LUTs) of the conventional
implementation to that of the stochastic implementation.

Stochastic
Conventional Core Full

Module Cost Cost Save (%) Cost Save (%)
α β (α-β)/α γ (α-γ)/α

Gamma 96 16 83.3 124 -29.2
RGB→XYZ 524 64 87.8 301 42.6
XYZ→RGB 627 66 89.5 301 52.0

XYZ→CIE-L*ab 295 58 80.3 250 15.3
CIE-L*ab→XYZ 554 54 90.3 258 53.4
Geometric 831 32 96.1 299 64.0
Rotation 737 30 95.9 257 65.1
Example01 474 46 90.3 378 20.3
Example02 1065 109 89.8 378 64.5
Example03 702 89 87.3 318 54.7

Average 590 56 89.1 286 40.3

We evaluated the output in terms of the average error in pixel values. Table 3.6 shows

the results for three different injected noise ratios for both the stochastic implemen-

tations and the conventional implementations of the color-space converter functions.

The average output error of the conventional implementation is about twice that of the

stochastic implementation.

The stochastic approach produces dramatic results when the magnitude of the errors

is analyzed. In Table 3.7, we list the percentages of output pixels that have errors greater

than 20% for three different input noise ratios. With a 10% soft error injection rate,

the conventional approach produces outputs that are more than 20% off over 37% the

time. In contrast, the stochastic implementation never produces pixel values with errors

greater than 20%. Figure 1.3 visually shows what a difference this makes.
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Table 3.6: The average output error of the stochastic implementations compared to the
conventional implementations of the color-space converter functions.

Injected Error
Module 1% 2% 10%

Conv. Stoch. Conv. Stoch. Conv. Stoch.
Gamma 0.7 0.9 1.5 1.6 6.8 7.5

RGB→XYZ 2.7 0.8 5.3 1.4 22.4 6.2
XYZ→RGB 3.2 1.2 5.9 2.3 21.6 8.2

XYZ→CIE-L*ab 2.1 0.8 3.4 1.4 11.7 7.3
CIE-L*ab→XYZ 0.6 0.8 1.2 1.5 7.4 7.3

Average 2.2 0.9 4.0 1.7 15.8 7.3

Table 3.7: The percentage of pixels with errors greater than 20% for the conventional
implementations and the stochastic implementations of the color-space converter func-
tions.

Conventional Stochastic
Module Injected Error Injected Error

1% 2% 10% 1%, 2%, 10%
Gamma 1.4 3.8 13.4 0.0

RGB→XYZ 2.2 4.4 20.7 0.0
XYZ→RGB 11.7 20.0 63.8 0.0

XYZ→CIE-L*ab 6.1 11.6 43.7 0.0
CIE-L*ab→XYZ 2.0 4.0 20.7 0.0

Average 5.0 10.0 37.2 0.0
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3.9 Related Work

A sequence of early papers established the concept of logical computation on stochas-

tic bit streams [17, 18]. These papers discussed basic operations such as multiplication

and addition. Later papers delved into more complex operations, including exponential

functions and square roots [19, 20]. In [21], the authors discuss the implementation

of basic arithmetic operations as well as complex ones, including hyperbolic functions,

with stochastic bit streams. They also discuss different forms of stochastic representa-

tion, including a “bipolar” representation for negative values. Much of the interest in

computing with stochastic bit streams stems from the field of neural networks, where

the concept is known as “pulsed” or “pulse-coded” computation [22, 23].

In fact, the general concept of stochastic computing dates back even earlier, to work

by J. von Neumann in the 1950’s [24]. He applied probabilistic logic to the study of

thresholding and multiplexing operations on bundles of wires with stochastic signals.

As he eloquently states in the introduction to his seminal paper, “Error is viewed not as

an extraneous and misdirected or misdirecting accident, but as an essential part of the

[design].” We find this view, that randomness and noise are integral to computation, to

be compelling in the modern era of nanoscale electronics.

We point to two recent research efforts that embrace randomness in circuit and

system design. In [6], the authors propose a construct that they call probabilistic

CMOS (PCMOS) that generates random bits from intrinsic sources of noise. In [7],

PCMOS switches are applied to form a probabilistic system-on-a-chip (PSOC); this

system provides intrinsic randomness to the application layer, so that it can be exploited

by probabilistic algorithms. In [25] and [26], the authors propose a methodology for

designing stochastic processors, that is to say, processors that can tolerate computational

errors caused by hardware uncertainties. They strive for a favorable trade-off between

reliability and power consumption.



Chapter 4

Synthesizing Combinational Logic

to Generate Probabilities

A premise for logical computation on stochastic bit streams is the availability of

random bit streams with the requisite probabilities. Such streams can either be gen-

erated from physical random sources or with pseudo-random constructs such as LFSR.

We have shown how to generate stochastic bit streams from LFSR in Section 3.6.2. Fig-

ure 4.1 illustrates the general process. In each clock cycle, a random source generates

a value R obeying a certain probability density function f(R). A comparator compares

the value R with a constant value C: it outputs a one if R < C and a zero otherwise.

The output of the comparator is a stream of random bits that have probability

p =
∫ C

−∞
f(R) dR (4.1)

of being one.

Generating stochastic bit streams entails significant cost in terms of hardware re-

sources. If the system employs pseudo-random number generators such as LFSRs, most

of the cost is incurred in the pseudo-random source itself. The constant value can be

generated relatively cheaply using a simple register [27].

50
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Figure 4.1: Generating stochastic bit streams from random or pseudo-random sources.

If the system exploits a physical mechanism, the random source may be cheap but

the constant value may be expensive to implement. For example, in [6], the authors

describe a scheme for exploiting the intrinsic thermal noise of nanoscale CMOS devices

as the random source. This is inexpensive to do. However, in their approach, the

constant value C corresponds to a supply voltage. Providing different supply voltages is

comparatively expensive. If the application requires many stochastic bit streams with

different probabilities, many constant values are required. The cost of generating these

directly might be prohibitive.

In this chapter, we present a synthesis strategy to mitigate this issue: we describe a

method for synthesizing combinational logic to transform a set of stochastic bit streams

representing a limited number of probabilities into stochastic bit streams representing

other target probabilities.

4.1 Description of the Problem

It is convenient to treat stochastic bit streams mathematically as random Boolean

variables. For what follows, we consider combinational logic that has random Boolean

variables as inputs. When we say “a probability,” we mean the probability of a random

Boolean variable being one. When we say “a circuit,” we mean a combinational circuit

built with logic gates.
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Figure 4.2: An illustration of transforming a set of source probabilities into new prob-
abilities with logic gates. (a): An inverter implementing P (Z = 1) = 1 − P (X = 1).
(b): An AND gate implementing P (Z = 1) = P (X = 1) · P (Y = 1). (c): A NOR gate
implementing P (Z = 1) = (1− P (X = 1)) · (1− P (Y = 1)).

Example 7

Suppose that we have a set of source probabilities S = {0.4, 0.5}. As illustrated in

Figure 4.2, we can transform this set into new probabilities:

1. Given an input x with probability 0.4, an inverter will have an output z with

probability 0.6 since

P (z = 1) = P (x = 0) = 1− P (x = 1). (4.2)

2. Given inputs x and y with independent probabilities 0.4 and 0.5, an AND gate

will have an output z with probability 0.2 since

P (z = 1) = P (x = 1, y = 1) = P (x = 1)P (y = 1). (4.3)

3. Given inputs x and y with independent probabilities 0.4 and 0.5, a NOR gate will

have an output z with probability 0.3 since

P (z = 1) = P (x = 0, y = 0) = P (x = 0)P (y = 0)

= (1− P (x = 1))(1− P (y = 1)).

Thus, using combinational logic, we obtain the set of probabilities {0.2, 0.3, 0.6} from

the set {0.4, 0.5}. �

Motivated by this example, we consider the problem of how to synthesize combina-

tional logic to transform a set of source probabilities S = {p1, p2, . . . , pn} into a target
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probability q. We assume that the probabilistic sources are all independent. We consider

three scenarios:

1. Scenario One:

Suppose that we are generating stochastic bit streams from physical random

sources and that we have the flexibility to construct a number of constant value

generators. This gives us the freedom to choose a set of source probabilities S.

The cost of the random sources is negligible but the cost of generating the constant

values for the comparators is considerable. Accordingly, we seek to minimize the

cardinality of the set S. Note that we can produce multiple independent copies

of each source probability in S cheaply, since each copy uses the same constant

value. Thus, we assume that each probability in the set S can be used an arbitrary

number of times. (We say that the probability can be duplicated.) The problem is

to find a small set S and to demonstrate how to synthesize logic that transforms

the values from this set into an arbitrary target probability q.

2. Scenario Two:

Suppose that we are given a collection of stochastic bit stream generators that

produce a fixed set S of source probabilities. We cannot adjust the probabilities

in S nor can we duplicate them; each source probability can only be used once.

(Although we cannot duplicate the values, the set S can be a multiset, i.e., one

that could contain multiple elements of the same value.) The problem is how

to synthesize logic that has input probabilities taken from this fixed set S and

produces an output probability q.

3. Scenario Three:

Suppose that we are generating stochastic bit streams with pseudo-random con-

structs such as LFSRs and we have full freedom to design the system. In this

case, the cost of building the random sources is considerable. Suppose that we
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establish a budget of n random sources. Thus, the number of input stochastic bit

streams is limited to n. Since it is relatively cheap to generate different constant

values, we are able to choose n arbitrary source probabilities. The problem is to

find a set S of n probabilities such that we can synthesize logic that transforms

values from this set into an arbitrary probability q. Again, the set S can be a

multiset. Since each probability in the source set S corresponds to an individual

random source, each element of the set S can be used as an input probability at

most once.

To summarize, we consider scenarios that differ in respect to:

1. Whether the set S is specified or not.

2. Whether the probabilities from S can be duplicated or not.

Specifically, in Scenario One, the set S is not specified and the probabilities from S

can be duplicated. In Scenario Two, the set S is specified and the probabilities from S

cannot be duplicated. In Scenario Three, the set S is not specified and the probabilities

from S cannot be duplicated.

4.2 Scenario One: Set S is not Specified and the Elements

Can Be Duplicated

In this scenario, we assume that the set S of probabilities is not specified. Once the

set has been determined, each element of the set can be used as an input probability an

arbitrary number of times. The inputs are all assumed to be independent. As discussed

in the introduction, we seek a set S of small size.
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4.2.1 Generating Decimal Probabilities

In this section, we consider the case where the target probabilities are represented

as decimal numbers. The problem is to find a small set S of source probabilities that

can be transformed into an arbitrary target decimal probability. We provide a set S

consisting of two elements.

Theorem 6

With circuits consisting of fanin-two AND gates and inverters, we can transform the set

of source probabilities {0.4, 0.5} into an arbitrary decimal probability. �

Proof. First, we note that an inverter with a probabilistic input gives an output prob-

ability equal to one minus the input probability, as was shown in Equation (4.2). An

AND gate with two independent inputs performs a multiplication of the input probabil-

ities, as was shown in Equation (4.3). Thus, we need to prove: with the two operations

1−x and x ·y, we can transform the values from the set {0.4, 0.5} into arbitrary decimal

fractions. We prove this statement by induction on the number of digits n after the

decimal point.

Base case:

1. n = 0. The values 0 and 1 correspond to deterministic inputs of zero and one,

respectively.

2. n = 1. We can generate 0.1, 0.2, and 0.3 as follows:

0.1 = 0.4× 0.5× 0.5,

0.2 = 0.4× 0.5,

0.3 = (1− 0.4)× 0.5.

Since we can generate the decimal fractions 0.1, 0.2, 0.3, and 0.4, we can generate

0.6, 0.7, 0.8, and 0.9 with an extra 1−x operation. Together with the source value

0.5, we can transform the pair of values 0.4 and 0.5 into any decimal fraction with

one digit after the decimal point.
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Inductive step:

Assume that the statement holds for all m ≤ (n − 1). Consider an arbitrary decimal

fraction z with n digits after the decimal point. Let u = 10n · z. Here u is an integer.

Consider the following four cases.

1. The case where 0 ≤ z ≤ 0.2.

(a) The integer u is divisible by 2. Let w = 5z. Then 0 ≤ w ≤ 1 and w =

(u/2) · 10−n+1, having at most (n− 1) digits after the decimal point. Thus,

based on the induction hypothesis, we can generate w. It follows that z can

be generated as z = 0.4× 0.5× w.

(b) The integer u is not divisible by 2 and 0 ≤ z ≤ 0.1. Let w = 10z. Then

0 ≤ w ≤ 1 and w = u · 10−n+1, having at most (n − 1) digits after the

decimal point. Thus, based on the induction hypothesis, we can generate w.

It follows that z can be generated as z = 0.4× 0.5× 0.5× w.

(c) The integer u is not divisible by 2 and 0.1 < z ≤ 0.2. Let w = 2− 10z. Then

0 ≤ w < 1 and w = 2 − u · 10−n+1, having at most (n − 1) digits after the

decimal point. Thus, based on the induction hypothesis, we can generate w.

It follows that z can be generated as z = (1− 0.5× w)× 0.4× 0.5.

2. The case where 0.2 < z ≤ 0.4.

(a) The integer u is divisible by 4. Let w = 2.5z. Then 0 < w ≤ 1 and

w = (u/4) · 10−n+1, having at most (n − 1) digits after the decimal point.

Thus, based on the induction hypothesis, we can generate w. It follows that

z can be generated as z = 0.4× w.

(b) The integer u is not divisible by 4 but is divisible by 2. Let w = 2−5z. Then

0 ≤ w < 1 and w = 2− (u/2) ·10−n+1, having at most (n−1) digits after the
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decimal point. Thus, based on the induction hypothesis, we can generate w.

It follows that z can be generated as z = (1− 0.5× w)× 0.4.

(c) The integer u is not divisible by 2 and 0.2 < u ≤ 0.3. Let w = 10z− 2. Then

0 < w ≤ 1 and w = u · 10−n+1 − 2, having at most (n − 1) digits after the

decimal point. Thus, based on the induction hypothesis, we can generate w.

It follows that z can be generated as z = (1− (1− 0.5× w)× 0.5)× 0.4.

(d) The integer u is not divisible by 2 and 0.3 < u ≤ 0.4. Let w = 4− 10z. Then

0 ≤ w < 1 and w = 4 − u · 10−n+1, having at most (n − 1) digits after the

decimal point. Thus, based on the induction hypothesis, we can generate w.

It follows that z can be generated as z = (1− 0.5× 0.5× w)× 0.4.

3. The case where 0.4 < z ≤ 0.5. Let w = 1 − 2z. Then 0 ≤ w < 0.2 and w

falls into case 1. Thus, we can generate w. It follows that z can be generated as

z = 0.5× (1− w).

4. The case where 0.5 < z ≤ 1. Let w = 1 − z. Then 0 ≤ w < 0.5 and w falls into

one of the above three cases. Thus, we can generate w. It follows that z can be

generated as z = 1− w.

For all of the above cases, we proved that we can transform the pair of values 0.4

and 0.5 into z with the two operations 1− x and x · y. Thus, we proved the statement

for all m ≤ n. By induction, the statement holds for all integers n. �

Based on the proof above, we derive an algorithm to synthesize a circuit that trans-

forms the probabilities from the set {0.4, 0.5} into an arbitrary decimal probability z.

This is shown in Algorithm 1.

The function GetDigits(z) in Algorithm 1 returns the number of digits after the

decimal point of z. The algorithm iterates until z has at most one digit after the

decimal point. During each iteration, it calls the function ReduceDigit(ckt, z). This
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Algorithm 1 Synthesize a circuit consisting of AND gates and inverters that transforms
the probabilities from the set {0.4, 0.5} into a target decimal probability.

1: {Given an arbitrary decimal probability 0 ≤ z ≤ 1.}
2: Initialize ckt;
3: while GetDigits(z) > 1 do
4: (ckt, z)⇐ ReduceDigit(ckt, z);
5: end while
6: ckt ⇐ AddBaseCkt(ckt, z); {Base case: z has at most one digit after the decimal

point.}
7: return ckt;

function, shown in Algorithm 2, converts z into a number w with one less digit after

the decimal point than z. It is implemented based on the inductive step in the proof

of Theorem 6. Finally, the algorithm calls the function AddBaseCkt(ckt, z) to add

logic gates to realize a number z with at most one digit after the decimal point; this

corresponds to the base case of the proof.

The function ReduceDigit(ckt, z) in Algorithm 2 builds the circuit from the output

back to the inputs. During its construction, the circuit always has a single dangling

input. Initially, the circuit is just a wire connecting an input to the output. The

function AddInverter(ckt) attaches an inverter to the dangling input creating a new

dangling input. The function AddAND(ckt, p) attaches a fanin-two AND gate to the

dangling input; one of the AND gate’s inputs is the new dangling input; the other is

set to a random source of probability p. In Algorithm 2, Lines 3–5 correspond to Case

4 in the proof; Lines 6–9 correspond to Case 3; Lines 10–19 correspond to Case 1; and

Lines 20–34 correspond to Case 2.

The area complexity of the synthesized circuit is linear in the number of digits after

the target value’s decimal point, since at most 3 AND gates and 3 inverters are needed

to generate a value with n digits after the decimal point from a value with (n−1) digits
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Algorithm 2 ReduceDigit(ckt, z)

1: {Given a partial circuit ckt and an arbitrary decimal probability 0 ≤ z ≤ 1.}
2: n⇐ GetDigits(z);
3: if z > 0.5 then {Case 4}
4: z ⇐ 1− z; AddInverter(ckt);
5: end if
6: if 0.4 < z ≤ 0.5 then {Case 3}
7: z ⇐ z/0.5; AddAND(ckt, 0.5);
8: z ⇐ 1− z; AddInverter(ckt);
9: end if

10: if z ≤ 0.2 then {Case 1}
11: z ⇐ z/0.4; AddAND(ckt, 0.4);
12: z ⇐ z/0.5; AddAND(ckt, 0.5);
13: if GetDigits(z) < n then
14: go to END;
15: end if
16: if z > 0.5 then
17: z ⇐ 1− z; AddInverter(ckt);
18: end if
19: z = z/0.5; AddAND(ckt, 0.5);
20: else {Case 2: 0.2 < z ≤ 0.4}
21: z ⇐ z/0.4; AddAND(ckt, 0.4);
22: if GetDigits(z) < n then
23: go to END;
24: end if
25: z ⇐ 1− z; AddInverter(ckt);
26: z ⇐ z/0.5; AddAND(ckt, 0.5);
27: if GetDigits(z) < n then
28: go to END;
29: end if
30: if z > 0.5 then
31: z ⇐ 1− z; AddInverter(ckt);
32: end if
33: z = z/0.5; AddAND(ckt, 0.5);
34: end if
35: END: return ckt, z;
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after the decimal point.1 The number of AND gates in the synthesized circuit is at

most 3n.

Example 8

We show how to generate the probability value 0.757. Based on Algorithm 1, we can

derive a sequence of operations that transform 0.757 to 0.7:

0.757 1−=⇒ 0.243
/0.4
=⇒ 0.6075 1−=⇒ 0.3925

/0.5
=⇒ 0.785 1−=⇒ 0.215

/0.5
=⇒ 0.43,

0.43
/0.5
=⇒ 0.86 1−=⇒ 0.14

/0.4
=⇒ 0.35

/0.5
=⇒ 0.7.

Since 0.7 can be realized as 0.7 = 1 − (1 − 0.4) × 0.5, we obtain the circuit shown in

Figure 4.3. (Note that here we use a black dot to represent an inverter.) �

0.4

0.5

0.6
0.7

0.5

0.35

0.4

0.86

0.5

0.5

0.43
0.785

0.6075

0.5
0.4

0.757

AND

AND
AND

AND
AND

AND
AND

Figure 4.3: A circuit transforming the set of source probabilities {0.4, 0.5} into a decimal
output probability of 0.757.

Remarks:

1. One may question the usefulness of synthesizing a circuit that generates arbitrary

decimal fractions. In [28], Wilhelm and Bruck proposed a scheme for synthesizing

switching circuits that generate arbitrary binary probabilities. A switching circuit

consists of relays that are either open or closed; the circuit computes a logical value

of one if there exists a closed path through the circuit. By mapping every switch

connected in series to an AND gate and every switch connected in parallel to an
1 In Case 3, z is transformed into w = 1 − 2z where w falls in Case 1(a). Thus, we actually need

only 3 AND gates and 1 inverter for Case 3. For the other cases, it is not hard to see that we need at
most 3 AND gates and 3 inverters.
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OR gate, we can easily derive a combinational circuit that generates an arbitrary

binary probability. Since any decimal fractional value can be approximated by a

binary fractional value, we can build combinational circuits implementing decimal

probabilities this way. However, the circuits synthesized by our procedure are less

costly in terms of area.

To see this, consider a decimal fraction q with n digits. The circuit that Algo-

rithm 1 synthesizes to generate q has at most 3n AND gates. For the approxi-

mation error of the binary fraction for q to be below 1/10n, the number of digits

m of the binary fraction should be greater than n log2 10. In [28], it is proved

that the minimal number of probabilistic switches needed to generate a binary

fraction of m digits is m. Assuming that we build an equivalent combinational

circuit consisting of AND gates and inverters, we need m−1 AND gates to imple-

ment the binary fraction.2 Thus, the combinational logic realizing the binary

approximation needs more than n log2 10 ≈ 3.32n AND gates. This is more than

the number of AND gates in the circuit synthesized by our procedure.

2. In many applications, we need to generate many different target probabilities. To

make these target probabilities independent, we can generate each of them from

a different collection of input probabilities. It is inexpensive to generate different

collections of input probabilities taking values from the source set, since we can

generate independent copies of each probability in the source set cheaply.

4.2.2 Reducing the Depth

The circuits produced by Algorithm 1 have a linear topology (i.e., each gate adds to

the depth of the circuit). For practical purposes, we want circuits with shallower depth.

In this section, we explore two kinds of optimizations for reducing the depth.
2 Of course, an OR gate can be converted into an AND gate with inverters at both the inputs and

the output.
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Figure 4.4: An illustration of balancing to reduce the depth of the circuit. Here a and b
are primary inputs. (a): The circuit before balancing. (b): The circuit after balancing.

The first kind of optimization is at the logic level. The circuit synthesized by Algo-

rithm 1 is composed of inverters and AND gates. We can reduce its depth by properly

repositioning certain AND gates, as illustrated in Figure 4.4. We refer to such opti-

mization as balancing.

The second kind of optimization is at a higher level, based on the factorization of

the decimal fraction. We use the following example to illustrate the basic idea.

Example 9

Suppose we want to generate the decimal probability value 0.49.

Method based on Algorithm 1: We can derive the following transformation sequence:

0.49
/0.5
=⇒ 0.98 1−=⇒ 0.02

/0.4
=⇒ 0.05

/0.5
=⇒ 0.1.

The synthesized circuit is shown in Figure 4.5(a). Notice that the circuit is balanced;

it has five AND gates and a depth of four.3

Method based on factorization: Notice that 0.49 = 0.7×0.7. Thus, we can generate the

probability 0.7 twice and feed these values into an AND gate. The synthesized circuit

is shown in Figure 4.5(b). Compared to the circuit in Figure 4.5(a), both the number

of AND gates and the depth of the circuit are reduced. �

3 When counting depth, we ignore inverters.
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Figure 4.5: Synthesizing combinational logic to generate the probability 0.49. (a):
The circuit synthesized through Algorithm 1. (b): The circuit synthesized based on
factorization.

Algorithm 3 shows the procedure that synthesizes the circuit based on the factor-

ization of the decimal fraction. The factorization is actually carried out on the numer-

ator. A crucial function is PairCmp(al, ar, bl, br), which compares the integer factor

pair (al, ar) with the pair (bl, br) and returns a positive (negative) value if the pair

(al, ar) is better (worse) than the pair (bl, br). Algorithm 4 shows how the function

PairCmp(al, ar, bl, br) is implemented.

The quality of a factor pair (al, ar) should reflect the depth of the circuit that

generates the original probability based on that factorization. For this purpose, we

define a function EstDepth(x) to estimate the depth of the circuit that generates the

decimal fraction with a numerator x. If 1 ≤ x ≤ 9, the corresponding fraction is x/10.

EstDepth(x) is set as the depth of the circuit that generates the fraction x/10, which is

EstDepth(x) =


0, x = 4, 5, 6,

1, x = 2, 3, 7, 8,

2, x = 1, 9.

When x ≥ 10, we use a simple heuristic to estimate the depth: we let EstDepth(x) =

dlog10(x)e+1. The intuition behind this is that the depth of the circuit is a monotonically

increasing function of the number of digits of x. The estimated depth of the circuit that

generates the original fraction based on the factor pair (al, ar) is

max{EstDepth(al),EstDepth(ar)}+ 1. (4.4)
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Algorithm 3 ProbFactor(ckt, z)

1: {Given a partial circuit ckt and an arbitrary decimal probability 0 ≤ z ≤ 1.}
2: n⇐ GetDigits(z);
3: if n ≤ 1 then
4: ckt⇐ AddBaseCkt(ckt, z);
5: return ckt;
6: end if
7: u⇐ 10nz; (ul, ur)⇐ (1, u); {u is the numerator of the fraction z}
8: for each factor pair (a, b) of u do
9: if PairCmp(ul, ur, a, b) < 0 then

10: (ul, ur)⇐ (a, b); {Choose the best factor pair for z}
11: end if
12: end for
13: w ⇐ 10n − u; (wl, wr)⇐ (1, w);
14: for each factor pair (a, b) of w do
15: if PairCmp(wl, wr, a, b) < 0 then
16: (wl, wr)⇐ (a, b); {Choose the best factor pair for 1− z}
17: end if
18: end for
19: if PairCmp(ul, ur, wl, wr) < 0 then
20: (ul, ur)⇐ (wl, wr); z ⇐ w/10n;
21: AddInverter(ckt);
22: end if
23: if IsTrivialPair(ul, ur) then {ul = 1 or ur = 1}
24: (ckt, z)⇐ ReduceDigit(ckt, z);
25: ckt⇐ ProbFactor(ckt, z);
26: return ckt;
27: end if
28: nl ⇐ dlog10(ul)e; nr ⇐ dlog10(ur)e;
29: if nl + nr > n then {Unable to factor z into two decimal fractions in the unit

interval}
30: (ckt, z)⇐ ReduceDigit(ckt, z);
31: ckt⇐ ProbFactor(ckt, z);
32: return ckt;
33: end if
34: zl ⇐ ul/10nl ; zr ⇐ ur/10nr ;
35: cktl ⇐ ProbFactor(cktl, zl);
36: cktr ⇐ ProbFactor(cktr, zr);
37: Connect the input of ckt to an AND gate with two inputs as cktl and cktr;
38: if nl + nr < n then
39: AddExtraLogic(ckt, n− nl − nr);
40: end if
41: return ckt;
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The function PairCmp(al, ar, bl, br) essentially compares the quality of pair (al, ar)

and pair (bl, br) based on Equation (4.4). Further details are given in Algorithm 4.

Algorithm 4 PairCmp(al, ar, bl, br)

1: {Given two integer factor pairs (al, ar) and (bl, br)}
2: cl ⇐ EstDepth(al); cr ⇐ EstDepth(ar);
3: dl ⇐ EstDepth(bl); dr ⇐ EstDepth(br);
4: Order(cl, cr); {Order cl and cr, so that cl ≤ cr}
5: Order(dl, dr); {Order dl and dr, so that dl ≤ dr}
6: if cr < dr then {The circuit w.r.t. the first pair has smaller depth}
7: return 1;
8: else if cr > dr then {The circuit w.r.t. the first pair has larger depth}
9: return -1;

10: else
11: if cl < dl then {The circuit w.r.t. the first pair has fewer ANDs}
12: return 1;
13: else if cl > dl then {The circuit w.r.t. the first pair has more ANDs}
14: return -1;
15: else
16: return 0;
17: end if
18: end if

In Algorithm 3, Lines 2–6 correspond to the trivial fractions. If the fraction z is

non-trivial, Lines 7–12 choose the best factor pair (ul, ur) of u, where u is the numerator

of the fraction z. Lines 13–18 choose the best factor pair (wl, wr) of w, where w is the

numerator of the fraction 1 − z. Finally, Lines 19–22 choose the better factor pair of

(ul, ur) and (wl, wr). Here, we consider the factorization on both z and 1 − z, since in

some cases the latter might be better than the former. An example is z = 0.37. Note

that 1− z = 0.63 = 0.7× 0.9; this has a better factor pair than z itself.

After obtaining the best factor pair, we check whether we can use it. Lines 23–27

check whether the factor pair (ul, ur) is trivial; a factor pair is considered trivial if ul = 1

or ur = 1. If the best factor pair is trivial, we call the function ReduceDigit(ckt, z) in

Algorithm 2 to transform z into a new value with one less digit after the decimal point.

Then we perform factorization on the new value.
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If the best factor pair is non-trivial, Lines 28–33 continue to check whether the factor

pair can be transformed into two decimal fractions in the unit interval. Let nl be the

number of digits of the integer ul and nr be the number of digits of the integer ur. If

nl + nr > n, where n is the number of digits after the decimal point of z, then it is

impossible to use the factor pair (ul, ur) to factorize z. For example, consider z = 0.143.

Although we could factorize 143 as 11× 13, we cannot use the factor pair (11, 13) since

the factorization 0.11×1.3 and the factorization 1.1×0.13 both contain a fraction larger

than 1; a probability value can never be larger than 1. If it is impossible to use the best

factor pair (ul, ur) to factorize z, we call the function ReduceDigit(ckt, z) in Algorithm 2

to transform z into a new value with one less digit after the decimal point. Then we

perform factorization on the new value.

Finally, if it is possible to use the best factor pair, Lines 34–37 synthesize two circuits

for fractions ul/10nl and ur/10nr , respectively, and then combine these two circuits with

an AND gate. Lines 38–40 check whether n > nl + nr. If this is the case, we have

z = u/10n = ul/10nl · ur/10nr · 0.1n−nl−nr .

We need to add an extra AND gate with one input probability as 0.1n−nl−nr and the

other input probability as ul/10nl · ur/10nr . The extra logic is added through the

function AddExtraLogic(ckt,m).

4.2.3 Experimental Results

In this section, we empirically validate the effectiveness of the synthesis scheme that

is presented in the previous section. For logic-level optimization, we used the “balance”

command of the synthesis tool ABC [29]. We find that it is very effective in reducing

the depth of tree-style circuits.4

Table 4.1 compares the quality of the circuits generated by three different schemes.

The first scheme, called “Basic,” is based on Algorithm 1. It generates a linear-style
4 We find that the other synthesis commands of ABC such as “rewrite” do not affect the depth or

the number of AND gates of a tree-style AND-inverter graph.
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Table 4.1: A comparison of the basic synthesis scheme, the basic synthesis scheme with
balancing, and the factorization-based synthesis scheme with balancing.

Basic Basic+Balance Factor+Balance
#AND Depth

#Digits #AND Depth #AND Depth #AND Depth Imprv.(%) Imprv.(%)
n a1 d1 a2 d2 100a1−a2

a1
100d1−d2

d1

2 3.67 3.67 3.67 2.98 3.22 2.62 12.1 11.9
3 6.54 6.54 6.54 4.54 5.91 3.97 9.65 12.5
4 9.47 9.47 9.47 6.04 8.57 4.86 9.45 19.4
5 12.43 12.43 12.43 7.52 11.28 5.60 9.21 25.6
6 15.40 15.40 15.40 9.01 13.96 6.17 9.36 31.5
7 18.39 18.39 18.39 10.50 16.66 6.72 9.42 35.9
8 21.38 21.38 21.38 11.99 19.34 7.16 9.55 40.3
9 24.37 24.37 24.37 13.49 22.05 7.62 9.54 43.6
10 27.37 27.37 27.37 14.98 24.74 7.98 9.61 46.7
11 30.36 30.36 30.36 16.49 27.44 8.36 9.61 49.3
12 33.35 33.35 33.35 17.98 30.13 8.66 9.65 51.8

circuit. The second scheme, called “Basic+Balance,” combines Algorithm 1 and the

logic-level balancing algorithm. The third scheme, called “Factor+Balance,” combines

Algorithm 3 and the logic-level balancing algorithm. We performed experiments on a

set of target decimal probabilities that have n digits after the decimal point and average

the results. Table 4.1 shows the results for n ranging from 2 to 12. When n ≤ 5, we

synthesized circuits for all possible decimal probabilities with n digits after the decimal

point. When n ≥ 6, we randomly chose 100,000 decimal probabilities with n digits after

the decimal point as the synthesis targets. We show the average number of AND gates

and the average depth.

Compared to the “Basic+Balance” scheme, the “Factor+Balance” scheme reduces

the average number of AND gates by 10% and the average depth by more than 10%,

for all n. The percentage of reduction of the average depth increases with increasing n.

For n = 12, the average depth of the circuits is reduced by more than 50%. Both the
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Figure 4.6: Average number of AND gates and depth of the circuits versus n.

“Basic+Balance” and the “Factor+Balance” synthesis schemes have only millisecond-

order CPU runtimes.

In Figure 4.6, we plot the average number of AND gates and the average depth

of the circuits versus n for the “Basic+Balance” and “Factor+Balance” schemes. The

figure shows that the “Factor+Balance” scheme is clearly superior. The average number

of AND gates in the circuits synthesized by both schemes increases linearly with n.

The average depth of the circuits synthesized by the “Basic+Balance” scheme also

increases linearly with n. In contrast, the average depth of the circuits synthesized by

the “Factor+Balance” scheme increases logarithmically with n.

4.2.4 Generate Decimal Fractions with a Single Source Probability

Theorem 6 shows that there exists a pair of probabilities that can be used to generate

arbitrary decimal fractions. A stronger question is whether we can further reduce the

size of the set down to one, i.e., whether there exists a real number 0 ≤ p ≤ 1 such that

any decimal fractions can be generated from p with combinational logic.
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The first result is that there is no rational number p such that an arbitrary decimal

fraction can be generated from that p through combinational logic. To prove this, we

first need the following lemma.

Lemma 1

If the probability 1
2 can be generated from a rational probability p through combinational

logic, then p = 1
2 . �

Proof. Obviously, 0 < p < 1. Thus, we can assume that

p =
a

b
, (4.5)

where both a and b are positive integers, satisfying that a < b and (a, b) = 1.

Moreover, we can assume that a ≥ b− a. Otherwise, suppose that a < b− a. Since

we can generate 1
2 from p, we can also generate 1

2 from p∗ = 1− p by using an inverter

to convert p∗ into p. Note that p∗ = a∗

b∗ , where a∗ = b − a and b∗ = b, satisfying that

a∗ > b∗ − a∗. Thus, we can assume that a ≥ b− a.

Suppose that the Boolean function of the combinational logic that generates 1
2 from

p is f(x1, . . . , xn). For k = 0, 1, . . . , n, define

Ak = {(x1, . . . , xn)|(x1, . . . , xn) ∈ {0, 1}n, f(x1, . . . , xn) = 1, and
n∑
i=1

xi = k}.

(i.e., Ak consists of n-tuples over {0, 1} that have exactly k ones and let the function f

evaluate to one.) For k = 0, 1, . . . , n, define lk to be the cardinality of the set Ak. Note

that 0 ≤ lk ≤
(
n
k

)
.

Since each input of the combinational logic has probability p of being 1, we have

1
2

=
n∑
k=0

lk(1− p)n−kpk. (4.6)

Let c = b− a. Based on Equation (4.5), we can rewrite Equation (4.6) as

bn = 2
n∑
k=0

lka
kcn−k. (4.7)
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From Equation (4.7), we can show that a = 1. By contraposition, suppose that

a > 1. Since 0 ≤ l0 ≤
(
n
0

)
= 1, l0 is either 0 or 1. If l0 = 0, then from Equation (4.7),

we have

bn = 2
n∑
k=1

lka
kcn−k = 2a

n∑
k=1

lka
k−1cn−k.

Thus, a|bn. Since (a, b) = 1, the only possibility is that a = 1 which is contradictory

to our hypothesis that a > 1. Therefore, we have l0 = 1. Together with the binomial

expansion bn =
∑n

k=0

(
n
k

)
akcn−k, we can rewrite Equation (4.7) as

cn +
n∑
k=1

(
n

k

)
akcn−k = 2cn + 2

n∑
k=1

lka
kcn−k.

or

cn = a

n∑
k=1

((
n

k

)
− 2lk

)
ak−1cn−k. (4.8)

Thus, a|cn. Since (a, b) = 1 and c = b−a, we have (a, c) = 1. Thus, the only possibility

is that a = 1, which is contradictory to our hypothesis that a > 1.

Therefore, we proved that a = 1. Together with the assumption that b− a ≤ a < b,

we get b = 2. Thus, p can only be 1
2 . �

Now, we can prove the original statement.

Theorem 7

There is no rational number p such that an arbitrary decimal fraction can be generated

from that p with combinational logic. �

Proof. We prove the above statement by the way of contraposition. Suppose that there

exists a rational number p such that an arbitrary decimal fraction can be generated from

it through combinational logic.

Since an arbitrary decimal fraction can be generated from p, 0.5 = 1
2 can be gener-

ated. Thus, based on Lemma 1, we have p = 1
2 .

Note that 0.2 = 1
5 is also a decimal number. Thus, there exists a combinational

circuit which can generate the decimal fraction 1
5 from p = 1

2 .
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Suppose that the Boolean function of the combinational circuit that generates 1
5

from 1
2 is f(x1, . . . , xn). For k = 0, 1, . . . , n, define

Ak = {(x1, . . . , xn)|(x1, . . . , xn) ∈ {0, 1}n, f(x1, . . . , xn) = 1, and
n∑
i=1

xi = k}.

(i.e., Ak consists of n-tuples over {0, 1} that have exactly k ones and let the function f

evaluate to one.) For k = 0, 1, . . . , n, define lk to be the cardinality of the set Ak.

Since each input of the combinational circuit has probability 1
2 of being 1, we have

1
5

=
n∑
k=0

lk

(
1− 1

2

)n−k (1
2

)k
,

or

2n = 5
n∑
k=0

lk,

which is impossible since the right-hand side is a multiple of 5. Therefore, we proved

the statement in the theorem. �

Thus, based on Theorem 7, we have the conclusion that if there exists a p such that

an arbitrary decimal fraction can be generated from p through combinational logic, the

number p must be irrational.

On the one hand, we note that if such a value p exists, then 0.4 and 0.5 can be

generated from it. On the other hand, due to Theorem 6, if p can generate 0.4 and 0.5,

then p can generate arbitrary decimal numbers. The following lemma shows that such

a value p that could generate 0.4 and 0.5 does, in fact, exist.

Lemma 2

The polynomial g(t) = 10t − 20t2 + 20t3 − 10t4 − 1 has a real root 0 < p < 0.5. This

value p can generate both 0.4 and 0.5 through combinational logic. �

Proof. First, note that g(0) = −1 < 0 and that g(0.5) = 0.875 > 0. Based on the

continuity of the function g(t), there exists a 0 < p < 0.5 such that g(p) = 0. Let

polynomial h(t) = 1
10(g(t) + 1) = t− 2t2 + 2t3 − t4. Then, h(p) = 0.1.
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Note that the Boolean function

f1(x1, x2, x3, x4, x5) = (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬x5)

has 30 minterms, m1,m2, . . . ,m30. It is not hard to verify that with P (xi = 1) = p for

i = 1, 2, 3, 4, 5, the output probability of f1 is

p1 = 5(1− p)4p+ 10(1− p)3p2 + 10(1− p)2p3 + 5(1− p)p4

= 5h(p) = 0.5.

Thus, the probability value 0.5 can be generated. Now consider the Boolean function

f2(x1,x2, x3, x4, x5) = (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ ¬x5)

∧ (¬x2 ∨ x3 ∨ ¬x5) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4 ∨ ¬x5).

It has 24 minterms, m2,m4,m5, . . . ,m8,m10, m12,m13, . . . ,m24,m26,m28,m29,m30. It

is not hard to verify that with P (xi = 1) = p for i = 1, 2, 3, 4, 5, the output probability

of f2 is

p2 = 4(1− p)4p+ 8(1− p)3p2 + 8(1− p)2p3 + 4(1− p)p4

= 4h(p) = 0.4.

Thus, the probability value 0.4 can be generated. �

Based on Theorem 6 and Lemma 2, we have the following theorem.

Theorem 8

With the set S = {p}, where p is the root of the polynomial g(t) = 10t − 20t2 +

20t3 − 10t4 − 1 in the unit interval, we can generate arbitrary decimal fractions with

combinational logic. �

4.2.5 Generating Base-n Fractional Probabilities

In this section, we generalize the result of Section 4.2.4. We show that for any integer

n ≥ 2, there exists a real number 0 ≤ r ≤ 1 that can be transformed into an arbitrary

base-n fractional probability m
nd

with combinational logic.
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First, we show that we can transform a set of probabilities { 1
n ,

2
n , . . . ,

n−1
n } into an

arbitrary base-n fractional probability m
nd

.

Theorem 9

Let n ≥ 2 be an integer. For any integers d ≥ 1 and 0 ≤ m ≤ nd, we can transform the

set of probabilities { 1
n ,

2
n , . . . ,

n−1
n } into a base-n fractional probability m

nd
with a circuit

having 2d− 1 inputs. �

Proof. We prove the above claim by induction on d.

Base case: When d = 1, we can obtain each base-n fractional probability m
n (0 ≤

m ≤ n) directly from an input since the input probability set is { 1
n , . . . ,

n−1
n } and the

probabilities 0 and 1 correspond to deterministic values of zero and one, respectively.

Inductive step: Assume the claim holds for d − 1. Now consider any integer 0 ≤

m ≤ nd. We can write m as m = and−1 + b with an integer 0 ≤ a < n and an integer

0 ≤ b ≤ nd−1.

Consider a multiplexer with data input x1 and x2, selecting input s, and output y,

as shown in Figure 4.7. The Boolean function of the multiplexer is:

y = (x1 ∧ s) ∨ (x2 ∧ ¬s).

By the induction hypothesis, we can transform the set of probabilities { 1
n ,

2
n , . . . ,

n−1
n }

into the probability b
nd−1 with a circuit Q that has 2d− 3 inputs. In order to generate

the output probability m
nd

, we let the inputs x1 and x2 of the multiplexer have prob-

ability a+1
n and a

n , respectively, and we connect the input s to the output of a circuit

Q that generates the probability b
nd−1 , as shown in Figure 4.7. Note that the inputs

to x1 and x2 are either probabilistic inputs with a value from the set { 1
n , . . . ,

n−1
n }, or

deterministic inputs of zero or one. With the primary inputs of the entire circuit being

independent, all the inputs of the multiplexer are also independent. The probability
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Figure 4.7: The circuit generating the base-n fractional probability m
nd

, where m is
written as m = and−1 + b with 0 ≤ a < n and 0 ≤ b ≤ nn−1. The circuit Q in the figure
generates the base-n fractional probability b

nd−1 .

that y is one is

P (y = 1) = P (x1 = 1, s = 1) + P (x2 = 1, s = 0)

= P (x1 = 1)P (s = 1) + P (x2 = 1)P (s = 0)

=
a+ 1
n

b

nd−1
+
a

n

(
1− b

nd−1

)
=
and−1 + b

nd
=
m

nd
.

Therefore, we can transform the set of probabilities { 1
n ,

2
n , . . . ,

n−1
n } into the proba-

bility m
nd

with a circuit that has 2d − 3 + 2 = 2d − 1 inputs. Thus, the claim holds for

d. By induction, the claim holds for all d ≥ 1. �

Remarks:

1. An equivalent result to Theorem 9 can be found in the work of Jeavons et al. [30].

There it is couched in information theoretic language in terms of concurrent op-

erations on random binary sequences.

2. Our proof of Theorem 9 is constructive. It shows that we can synthesize a chain

of d− 1 multiplexers to generate a base-n fractional probability m
nd

.
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3. If some of the inputs to the chain of multiplexers are deterministic zeros or ones,

we can further simplify the circuit. In such cases, the number of inputs of the

entire circuit and the area of the circuit can be further reduced.

Next, we prove a theorem about the existence of a single real value that can be

transformed into any value in a given set of rational probabilities through combinational

logic.

Theorem 10

For any finite set of rational probabilities R = {p1, p2, . . . , pM}, there exists a real

number 0 < r < 1 that can be transformed into probabilities in the set R through

combinational logic. �

Proof. We only need to prove that the statement is true under the condition that

for all 1 ≤ i ≤ M , 0 ≤ pi ≤ 0.5. In fact, given a general set of probabilities R =

{p1, p2, . . . , pM}, we can derive a new set of probabilities R∗ = {p∗1, p∗2, . . . , p∗M}, such

that for all 1 ≤ i ≤M ,

p∗i =


pi, if pi ≤ 0.5,

1− pi, if pi > 0.5.

Then, for all 1 ≤ i ≤ M , the element p∗i of R∗ satisfies that 0 ≤ p∗i ≤ 0.5. Once we

prove that there exists a real number 0 < r < 1 which can be transformed into any of

the probabilities in the set R∗, then any probability in the original set R can also be

generated from this value r: to generate pi = p∗i , we use the same circuit that generates

the probability p∗i ; to generate pi = 1− p∗i , we append an inverter to the output.

Therefore, we assume that for all 1 ≤ i ≤ M , 0 ≤ pi ≤ 0.5. Further, without

loss of generality, we can assume that 0 ≤ p1 < · · · < pM ≤ 0.5. Since probability

0 can be realized trivially by a deterministic value of zero, we assume that p1 > 0.

Since p1, . . . , pM are rational probabilities, there exist positive integers a1, . . . , aM and

b such that for all 1 ≤ i ≤ M , pi = ai
b . Since 0 < p1 < · · · < pM ≤ 0.5, we have

0 < a1 < · · · < aM ≤ b
2 .
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First, it is not hard to see that there exists a positive integer h such that 2h−1 >

aMh+ 1. For k = 1, . . . , h, let ck =

⌊(
h
k

)
aM

⌋
, where bxc represents the largest integer less

than or equal to x.

We will prove

aM

h∑
k=1

ck > 2h−1. (4.9)

In fact,

2h − aM
h∑
k=1

ck =
h∑
k=0

(
h

k

)
−

h∑
k=1

⌊(
h
k

)
aM

⌋
aM

= 1 +
h∑
k=1

((
h
k

)
aM
−

⌊(
h
k

)
aM

⌋)
aM .

Since x− bxc < 1, we have

2h − aM
h∑
k=1

ck < 1 +
h∑
k=1

aM = aMh+ 1 < 2h−1,

or

aM

h∑
k=1

ck > 2h−1.

Now consider the polynomial f(x) =
h∑
k=1

ckx
k(1− x)h−k. Note that f(0) = 0 and

f(0.5) =
1
2h

h∑
k=1

ck. Based on Equation (4.9) and the fact that aM ≤ b
2 , we have

f(0.5) >
1

2aM
≥ 1
b
.

Thus, f(0) = 0 < 1
b < f(0.5). Based on the continuity of the polynomial f , there exists

a real number 0 < r < 0.5 < 1 such that f(r) = 1
b .

For all i = 1, . . . ,M , set li,0 = 0. For all i = 1, . . . ,M and all k = 1, 2, . . . , h, set

li,k = aick. Since for all k = 1, . . . , h, ck is an integer and 0 ≤ ck ≤
(
h
k

)
aM

, then for all

i = 1, . . . ,M and all k = 1, 2, . . . , h, li,k is an integer and 0 ≤ li,k = aick ≤ aMck ≤
(
h
k

)
.
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For k = 0, 1, . . . , h, let Ak = {(a1, a2, . . . , ah) ∈ {0, 1}h :
∑h

i=1 ai = k} (i.e., Ak

consists of h-tuples over {0, 1} having exactly k ones.). For any 1 ≤ i ≤ M , consider

a circuit with h inputs realizing a Boolean function that takes exactly li,k values 1 on

each Ak (k = 0, 1, . . . , h). If we set all the input probabilities to be r, then the output

probability is

po =
h∑
k=0

li,kr
k(1− r)h−k =

h∑
k=1

aickr
k(1− r)h−k

= aif(r) =
ai
b
.

Thus, we can transform r into any number in the set {p1, . . . , pM} through combi-

national logic. �

Theorems 9 and 10 lead to the following corollary.

Corollary 2

Given an integer n ≥ 2, there exists a real number 0 < r < 1 which can be transformed

into any base-n fractional probability m
nd

(d and m are integers with d ≥ 1 and 0 ≤ m ≤

nd) through combinational logic. �

Proof. Based on Theorem 10, there exists a real number 0 < r < 1 which can be

transformed into any probability in the set { 1
n ,

2
n , . . . ,

n−1
n }. Further, based on Theo-

rem 9, the statement in the corollary holds. �

4.3 Scenario Two: Set S is Specified and the Elements

Cannot Be Duplicated.

The problem considered in this scenario is: given a set S = {p1, p2, . . . , pn} and a

target probability q, construct a circuit that, given inputs with probabilities from S,
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produces an output with probability q. Each element of S can be used as an input

probability no more than once.

4.3.1 An Optimal Solution

In this section, we show an optimal solution to the problem based on linear 0-1

programming. With the assumption that the probabilities cannot be duplicated, we

are building a circuit with n inputs, the i-th input of which has probability pi. (If a

probability is not used, then the corresponding input is just a dummy.)

Our method is based on a truth table for n variables. Each row of the truth ta-

ble is annotated with the probability that the corresponding input combination occurs.

Assume that the n variables are x1, x2, . . . , xn and xi has probability pi. Then, the prob-

ability that the input combination x1 = a1, x2 = a2, . . . , xn = an (ai ∈ {0, 1}, for i =

1, . . . , n) occurs is

P (x1 = a1, x2 = a2, . . . , xn = an) =
n∏
i=1

P (xi = ai).

A truth table for a two-input XOR gate is shown in Table 5.1. The fourth column is the

probability that each input combination occurs. Here P (x = 1) = px and P (y = 1) = py.

Table 4.2: A truth table for a two-input XOR gate.

x y z Probability
0 0 0 (1− px)(1− py)
0 1 1 (1− px)py
1 0 1 px(1− py)
1 1 0 pxpy

The output probability is the sum of the probabilities of input combinations that

produce an output of one. Assume that the probability of the i-th input combination,

corresponding to minterm mi, is ri (0 ≤ i ≤ 2n − 1) and that the output of the circuit
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corresponding to the i-th input combination is zi (zi ∈ {0, 1}, 0 ≤ i ≤ 2n − 1). Then,

the output probability is

po =
2n−1∑
i=0

ziri. (4.10)

For the example in Table 5.1, the output probability is

po = r1 + r2 = (1− px)py + px(1− py).

Thus, constructing a circuit with output probability q is equivalent to determining

the zi’s such that Equation (4.10) evaluates to q. In the general case, depending on

the values of pi and q, it is possible that q cannot be exactly realized by any circuit.

The problem then is to determine the zi’s such that the difference between the value of

Equation (4.10) and q is minimized. We can formulate this as the following optimization

problem:

Find zi that minimizes
∣∣∣∑2n−1

i=0 ziri − q
∣∣∣ (4.11)

such that zi ∈ {0, 1} for i = 0, 1, . . . , 2n − 1. (4.12)

The solution of this optimization problem can be derived by first separating it into

two subproblems:

Problem 1

Find zi that minimizes obj1 =
∑2n−1

i=0 rizi−q, such that
∑2n−1

i=0 rizi−q ≥ 0 and zi ∈ {0, 1}

for i = 0, 1, . . . , 2n − 1.

Problem 2

Find zi that minimizes obj2 = q−
∑2n−1

i=0 rizi such that q−
∑2n−1

i=0 rizi ≥ 0 and zi ∈ {0, 1}

for i = 0, 1, . . . , 2n − 1.

Problems 1 and 2 are linear 0-1 programming problems that can be solved using stan-

dard techniques. Suppose that the minimum solution to Problem 1 is (z∗0 , z
∗
1 , . . . , z

∗
2n−1)

with obj1 = obj∗1 and the minimum solution to Problem 2 is (z∗∗0 , z
∗∗
1 , . . . , z

∗∗
2n−1) with
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obj2 = obj∗2. Then the solution to the original problem is the set of zi’s corresponding

to min{obj∗1, obj∗2}.

If the solution to the above optimization problem has zi = 1, then the Boolean func-

tion should contain the minterm mi; otherwise, it should not. A circuit implementing

the solution can be readily synthesized.5

4.3.2 A Suboptimal Solution

The above solution is simple and optimal; it works well when n is small. However,

when n is large, there are two difficulties with the implementation that might make

it impractical. First, the solution is based on linear 0-1 programming, which is NP -

hard. Therefore, the computational complexity will become significant. Secondly, if an

application-specific integrated circuit (ASIC) is designed to implement the solution of

the optimization problem, the circuit may need as many as O(2n) gates in the worst

case. This may be too costly for large n.

In this section, we provide a greedy algorithm that yields suboptimal results. How-

ever, the difference between the output probability of the circuit that it synthesizes and

the target probability q is bounded. The algorithm has good performance both in terms

of its run-time and the size of the resulting circuit.

The idea of the greedy algorithm is that we construct a group of n + 2 circuits

C0, C1, . . . , Cn+1 such that the circuit Ck (0 ≤ k ≤ n) has k probabilistic inputs and

one deterministic input of either zero or one and the circuit Cn+1 has n probabilistic

inputs and two deterministic inputs of either zero or one. For all 0 ≤ k ≤ n, the circuit

Ck+1 is constructed from Ck by replacing one input of Ck with a two-input gate.

The circuit C0 is constructed by connecting a single input x0 directly to the output.

The input x0 is either a deterministic value of zero or one. Thus, the probability pi0 of

the input x0 being a one is either 0 or 1. The choice of setting pi0 to 0 or 1 depends on
5 In particular, a field-programmable gate array (FPGA) can be configured for the task. For

an FPGA with n-input lookup tables, the i-th configuration bit of the table would be set to zi, for
i = 0, 1, . . . , 2n − 1.
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which one is closer to the value q: If q < 1 − q, we set pi0 to 0; otherwise, we set it to

1. In order for the circuit C0 to realize the exact probability q, there is an ideal value

p∗i0 that should replace the value pi0 . It is not hard to see that p∗i0 = q.

Now we assume that the Boolean function of the circuit Ck (0 ≤ k ≤ n − 1)

is fk(x0, x1, . . . , xk) and the input probabilities are P (x0 = 1) = pi0 , P (x1 = 1) =

pi1 , . . . , P (xk = 1) = pik , where pi0 ∈ {0, 1} and pi1 , . . . , pik ∈ S. Let p∗ik be an ideal

value such that if we replace pik by p∗ik and keep the remaining input probabilities

unchanged then the output probability of Ck is exactly equal to q.

Our idea for constructing the circuit Ck+1 is to replace the input xk of the circuit Ck

with a single gate with inputs xk and xk+1. Thus, the Boolean function of the circuit

Ck+1 is

fk+1(x0, . . . , xk+1) = fk(x0, . . . , xk−1, gk+1(xk, xk+1)),

where gk+1(xk, xk+1) is a Boolean function on two variables. We keep the probabilities of

the inputs x0, x1, . . . , xk the same as those of the circuit Ck. We choose the probability of

the input xk+1 from the remaining choices of the set S such that the output probability

of the newly added single gate is the closest to p∗ik . Assume that the probability of the

input xk+1 is pik+1
. In order to construct the circuit Ck+2 in the same way, we also

calculate an ideal probability p∗ik+1
such that if we replace pik+1

by p∗ik+1
and keep the

remaining input probabilities unchanged then the output probability of the circuit Ck+1

is exactly equal to q.

To make things easy, we only consider AND gates and OR gates as the choices for

the newly added gate. The choice depends on whether p∗ik > pik . When p∗ik > pik , we

choose an OR gate to replace the input xk of the circuit Ck. The first input of the OR

gate connects to xk and the second to xk+1 or to the negation of xk+1. The probability

of the input xk is kept as pik . The probability of the input xk+1 is chosen from the set

S\{pi1 , . . . , pik}. Thus, the first input probability of the OR gate is pik and the second
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is chosen from the set

Sk+1 = {p|p = pj or 1− pj , pj ∈ S\{pi1 , . . . , pik}}.

For an OR gate with two input probabilities a and b, its output probability is

a+ b− ab = a+ (1− a)b.

The second input probability of the OR gate is chosen as p in the set Sk+1 such that

the output probability of the OR gate pik + (1−pik)p is the closest to p∗ik . Equivalently,

p is the value in the set Sk+1 that is the closest to the value
p∗ik − pik
1− pik

. We have two

cases for p:

1. The case where p = pik+1
, for some pik+1

∈ S\{pi1 , . . . , pik}. We set the second

input of the OR gate to be xk+1 and set its probability as P (xk+1 = 1) = pik+1
.

The ideal value p∗ik+1
should set the output probability of the OR gate to be p∗ik ,

so it satisfies that

pik + (1− pik)p∗ik+1
= p∗ik , (4.13)

or

p∗ik+1
=
p∗ik − pik
1− pik

.

2. The case where p = 1−pik+1
, for some pik+1

∈ S\{pi1 , . . . , pik}. We set the second

input of the OR gate to be ¬xk+1 and set its probability as P (xk+1 = 1) = pik+1
.

The ideal value p∗ik+1
should set the output probability of the OR gate to be p∗ik ,

so it satisfies that

pik + (1− pik)(1− p∗ik+1
) = p∗ik , (4.14)

or

p∗ik+1
=

1− p∗ik
1− pik

.

When p∗ik ≤ pik , we choose an AND gate to replace the input xk of the circuit Ck.

The first input of the AND gate connects to xk and the second connects to xk+1 or to
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the negation of xk+1. The probability of the input xk is kept as pik . The probability

of the input xk+1 is chosen from the set S\{pi1 , . . . , pik}. Similar to the case where

p∗ik > pik , the second input probability of the AND gate is chosen as a value p in the

set Sk+1 such that the value p · pik is the closest to p∗ik . Equivalently, p is the value in

the set Sk+1 that is the closest to the value
p∗ik
pik

. We have two cases for p:

1. The case where p = pik+1
, for some pik+1

∈ S\{pi1 , . . . , pik}. We set the second

input of the AND gate to be xk+1 and set its probability as P (xk+1 = 1) = pik+1
.

The ideal value p∗ik+1
satisfies p∗ik+1

=
p∗ik
pik

.

2. The case where p = 1−pik+1
, for some pik+1

∈ S\{pi1 , . . . , pik}. We set the second

input of the AND gate to be ¬xk+1 and set its probability as P (xk+1 = 1) = pik+1
.

The ideal value p∗ik+1
satisfies

p∗ik+1
= 1−

p∗ik
pik

.

Iteratively, using the procedure above, we can construct circuits C1, C2, . . . , Cn.

Finally, we construct a circuit Cn+1, which is built from Cn by replacing its input

xn with an OR gate or an AND gate with two inputs xn and xn+1. We keep the

probabilities of the inputs x0, . . . , xn the same as those of the circuit Cn. The input

xn+1 is set to a deterministic value of zero or one. Thus, the probability of the input

xn+1 is either zero or or one. The choice of either an OR gate or an AND gate depends

on whether p∗in > pin . When p∗in > pin , we choose an OR gate. The ideal probability

value for the input xn+1 is

p∗in+1
=
p∗in − pin
1− pin

. (4.15)

When p∗in ≤ pin , we choose an AND gate. The ideal probability value for the input

xn+1 is

p∗in+1
=
p∗in
pin

. (4.16)
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The choice of setting the input xn+1 to a deterministic value of zero or one depends on

which one is closer to the value p∗in+1
: If |p∗in+1

| < |1−p∗in+1
|, then we set the input xn+1

to zero; otherwise, we set it to one.

There is no evidence to show that the difference between the output probability of

the circuit and q decreases as the number of inputs increases. Thus, we choose the one

with the smallest difference among the circuits C0, . . . , Cn+1 as the final construction.

It is easy to see that this algorithm completes in O(n2) time. For all 1 ≤ k ≤ n + 1,

the circuit Ck has k fanin-two gates. Thus, the final solution contains at most n + 1

fanin-two logic gates.

The following theorem shows that the difference between the target probability q and

the output probability of the circuit synthesized by the greedy algorithm is bounded.

Theorem 11

In Scenario Two, given a set S = {p1, p2, . . . , pn} and a target probability q, let p be

the output probability of the circuit constructed by the greedy algorithm. We have

|p− q| ≤ 1
2

n∏
k=1

max{pk, 1− pk}. �

Please see Appendix C for the proof.

Example 10

Given a set of input probabilities S = {0.4, 0.7, 0.8} and a target probability q = 0.63,

we show how to synthesize a circuit to generate the target probability based on the

greedy algorithm.

For the circuit C0, since 1− q < q, we set its input x0 to be a deterministic value of

one, or, equivalently, pi0 = 1. The circuit C0 is shown in Figure 4.8(a). The ideal value

p∗i0 = q = 0.63.

Since p∗i0 < pi0 , to construct the circuit C1, we replace the input x0 of the circuit

C0 by an AND gate. The probability of the first input of the AND gate is 1. The



85

probability p of the second input of the AND gate is chosen from the set

S1 = {0.2, 0.3, 0.4, 0.6, 0.7, 0.8}

so that it is the closest to the value p∗i0/pi0 = 0.63. Thus, we choose p = 0.6. Notice that

p = 1− 0.4. We set the second input of the AND gate to be ¬x1 and set its probability

as P (x1 = 1) = pi1 = 0.4. The ideal value p∗i1 = 1 − p∗i0/pi0 = 0.37. The circuit C1 is

shown in Figure 4.8(b). (Again, we use a black dot to represent an inverter.)

Iteratively, we can get circuit C2, C3, and C4 as those shown in Figures 4.8(c), (d),

and (e), respectively. The ideal values are p∗i2 = 0.925, p∗i3 = 0.625, and p∗i4 = 0.893.

The circuit whose output probability is the closest to the target probability 0.63 is the

circuit C3. Thus, we choose C3 as the final construction. Since the input x0 of C3 is

a deterministic value of one, we can further optimize C3. The final result is shown in

Figure 4.8(f). �

4.4 Scenario Three: Set S is not Specified and the

Elements Cannot Be Duplicated

In Scenario Two, when solving the optimization problem, the minimal difference∣∣∣∑2n−1
i=0 ziri − q

∣∣∣ is actually a function of q, which we denote as h(q). That is,

h(q) = min
∀i,zi∈{0,1}

∣∣∣∣∣
2n−1∑
i=0

ziri − q

∣∣∣∣∣ . (4.17)

Assume that q is uniformly distributed on the unit interval. The mean of h(q) for

q ∈ [0, 1] is solely determined by the set S. We can see that the smaller the mean is,

the better the set S is for generating arbitrary probabilities. Thus, the mean of h(q) is

a good measure for the quality of S. We will denote it as H(S). That is,

H(S) =
∫ 1

0
h(q) dq. (4.18)
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Figure 4.8: A group of circuits synthesized by the greedy algorithm to generate the
target probability q = 0.63 from the set of input probability S = {0.4, 0.7, 0.8}. The
black dots in the figure represent inverters. (a): The circuit C0. (b): The circuit C1. (c):
The circuit C2. (d): The circuit C3. (e): The circuit C4. (f): The final construction.
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The problem considered in this scenario is: given an integer n, choose the n elements

of the set S so that they produce a minimal H(S).

Note that the only difference between Scenario Two and Scenario Three is that in

Scenario Three, we are able to choose the elements of S. When constructing circuits,

each element of S is still constrained to be used no more than once. As in Scenario

Two, we are constructing a circuit with n inputs to realize each target probability. A

circuit with n inputs has a truth table of 2n rows. There are a total of 22n different

truth tables for n inputs. For a given assignment of input probabilities, we can get 22n

output probabilities.

Example 11

Consider the truth table shown in Table 4.3. Here, we assume that P (x = 1) = 4/5

and P (y = 1) = 2/3. The corresponding probability of each input combination is given

in the fourth column. For different assignments (z0z1z2z3) of the output column, we

obtain different output probabilities. For example, if (z0z1z2z3) = (1010), then the

output probability is 5/15; if (z0z1z2z3) = (1011), then the output probability is 13/15.

There are 16 different assignments for (z0z1z2z3), so we can get 16 output probabilities.

In this example, they are 0, 1/15, . . . , 14/15 and 1. �

Table 4.3: A truth table for two variables. The output column (z0z1z2z3) has a total of
16 different assignments.

x y z Probability
0 0 z0 1/15
0 1 z1 2/15
1 0 z2 4/15
1 1 z3 8/15

Let N = 22n . For a set S with n elements, call the N possible probability values

b1, b2, . . . , bN and assume that they are arranged in increasing order. That is b1 ≤ b2 ≤

· · · ≤ bN . Note that if the output column of the truth table consists of all zeros, the
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output probability is 0. If it consists of all ones, the output probability is 1. Thus, we

have b1 = 0 and bN = 1.

The first question is: what is a lower bound for H(S)? We have the following

theorem.

Theorem 12

A lower bound for H(S) is
1

4(N − 1)
. �

Proof. Note that for a q satisfying bi ≤ q ≤
bi + bi+1

2
, h(q) = q − bi; for a q satisfying

bi + bi+1

2
< q ≤ bi+1, h(q) = bi+1 − q. Thus,

H(S) =
∫ 1

0
h(q) dq

=
N−1∑
i=1

∫ bi+bi+1
2

bi

(q − bi) dq +
∫ bi+1

bi+bi+1
2

(bi+1 − q) dq


=

1
4

N−1∑
i=1

(bi+1 − bi)2.

(4.19)

Let ci = bi+1 − bi, for i = 1, . . . , N − 1. Since
∑N−1

i=1 ci = bN − b1 = 1, by the

Cauchy-Schwarz inequality, we have

H(S) =
1
4

N−1∑
i=1

c2
i ≥

1
4(N − 1)

(
N−1∑
i=1

ci

)2

=
1

4(N − 1)
. �

The second question is: can this lower bound for H(S) be achieved? We will show

that the lower bound is achieved for the set

S = {p|p =
22k

22k + 1
, k = 0, 1, . . . , n− 1}. (4.20)

Lemma 3

For a truth table on the inputs x1, . . . , xn arranged in the order xn, . . . , x1, let

P (xk = 1) =
22k−1

22k−1 + 1
, for k = 1, . . . , n.
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The probability of the i-th input combination (0 ≤ i ≤ 2n − 1) is
2i

22n − 1
. �

Proof. We prove the lemma by induction on n.

Base case: When n = 1, by assumption, P (x1 = 1) =
2
3

. The 0-th input combination

is x1 = 0 and has probability
1
3

=
20

22n − 1
.

The first input combination is x1 = 1 and has probability

2
3

=
21

22n − 1
.

Inductive step: Assume that the statement holds for (n− 1). Denote the probability

of the i-th input combination in the truth table of n variables as pi,n. By the induction

hypothesis, for 0 ≤ i ≤ 2n−1 − 1,

pi,n−1 =
2i

22n−1 − 1
.

Consider the truth table of n variables. Note that the input probabilities for x1, . . . , xn−1

are the same as those in the case of (n− 1) and P (xn = 1) =
22n−1

22n−1 + 1
.

When 0 ≤ i ≤ 2n−1 − 1, the i-th row of the truth table has xn = 0; the assignment

to the rest of the variables is the same as the i-th row of the truth table of (n− 1)

variables. Thus,

pi,n = P (xn = 0) · pi,n−1 =
1

22n−1 + 1
· 2i

22n−1 − 1
=

2i

22n − 1
. (4.21)

When 2n−1 ≤ i ≤ 2n− 1, the i-th row of the truth table has xn = 1; the assignment

to the rest of the variables is the same as the (i− 2n−1)-th row of the truth table of

(n− 1) variables. Thus,

pi,n = P (xn = 1) · pi−2n−1,n−1 =
22n−1

22n−1 + 1
· 2i−2n−1

22n−1 − 1
=

2i

22n − 1
. (4.22)

Combining Equation (4.21) and (4.22), the statement holds for n. Thus, the state-

ment in the lemma holds for all n. �
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Based on Lemma 3, we will show that the set S in Equation (4.20) achieves the

lower bound for H(S).

Theorem 13

The set S = {p|p =
22k

22k + 1
, k = 0, 1, . . . , n− 1} achieves the lower bound

1
4(N − 1)

for

H(S). �

Proof. By Lemma 3, for the given set S, the probability of the i-th input combination

(0 ≤ i ≤ 2n − 1) is
2i

22n − 1
. Therefore, the set of N = 22n possible probabilities is

R = {p|p =
2n−1∑
i=0

zi
2i

22n − 1
, zi ∈ {0, 1},∀i = 0, . . . , 2n − 1}.

It is not hard to see that the N possible probabilities in increasing order are

b0 = 0, b1 =
1

N − 1
, . . . , bi =

i

N − 1
, . . . , bN−1 = 1.

(Example 11 shows the situation for n = 2. We can see that with the set S = {2/3, 4/5},

we can get 16 possible probabilities: 0, 1/15, . . . , 14/15 and 1.)

Thus, by Equation (4.19), we have H(S) =
1

4(N − 1)
. �

To summarize, if we have the freedom to choose n real numbers for the set S of

source probabilities but each number can be used only once, the best choice is

S = {p|p =
22k

22k + 1
, k = 0, 1, . . . , n− 1}.

With the optimal set S, the truth table for a target probability q is easy to determine.

First, round q to the closest fraction in the form of
i

22n − 1
. Suppose the closest fraction

is
g(q)

22n − 1
. Then, the output of the i-th row of the truth table is set as the i-th least

significant digit of the binary representation of g(q). Again, a circuit implementing this

solution can be readily synthesized.
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4.5 Related Work

The problem of synthesizing circuits to transform a given set of probabilities into a

new set of probabilities appears in an early set of papers by Gill [31, 32]. He focused

on synthesizing sequential state machines for this task.

Motivated by problems in neural computation, Jeavons et al. considered the problem

of transforming stochastic binary sequences through what they call “local algorithms:”

fixed functions applied to concurrent bits in different sequences [30]. This is equivalent to

performing operations on stochastic bit streams with combinational logic, so in essence

they were considering the same problem as we are. Their main result was a method for

generating binary sequences with probability m
nd

from a set of stochastic binary sequences

with probabilities in the set { 1
n ,

2
n , . . . ,

n−1
n }. This is equivalent to our Theorem 9. In

contrast to the work of Jeavons et al., our primary focus is on minimizing the number

of source probabilities needed to realize arbitrary base-n fractional probabilities.

The proponents of PCMOS discussed the problem of synthesizing combinational

logic to transform probability values [7]. These authors suggested using a tree-based

circuit to realize a set of target probabilities. This was positioned as future work; no

details were given.

Wilhelm and Bruck proposed a general framework for synthesizing switching circuits

to achieve a desired probability [28]. Switching circuits were originally discussed by

Shannon [33]. These consist of relays that are either open or closed; the circuit computes

a logical value of one if there exists a closed path through the circuit. Wilhelm and Bruck

considered stochastic switching circuits, in which each switch has a certain probability of

being open or closed. They proposed an algorithm that generates the requisite stochastic

switching circuit to compute any binary probability.

Zhou and Bruck generalized Wilhelm and Bruck’s work [34]. They considered the

problem of synthesizing a stochastic switching circuit to realize an arbitrary base-n

fractional probability m
nd

from a probabilistic switch set { 1
n ,

2
n , . . . ,

n−1
n }. They showed
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that when n is a multiple of 2 or 3, such a realization is possible. However, for any

prime number n greater than 3, there exists a base-n fractional probability that cannot

be realized by any stochastic switching circuit.

In contrast to the work of Gill, to that of Wilhelm and Bruck, and to that of Zhou

and Bruck, we consider combinational circuits: memoryless circuits consisting of logic

gates. Our approach dovetails nicely with the circuit-level PCMOS constructs. It is

orthogonal to the switch-based approach of Zhou and Bruck. Note that Zhou and

Bruck assume that the probabilities in the given set S can be duplicated. We also

consider the case where they cannot.



Chapter 5

Synthesizing Two-Level Logic to

Generate Probabilities

In the previous chapter, we described a method for synthesizing combinational logic

to transform a set of source probabilities into different target probabilities. We demon-

strate that we are able to design a circuit to realize a required output probability.

However, the circuit synthesized by our algorithm is not guaranteed to be an optimal

design. In this chapter, we tackle a more challenging task: optimizing the circuits that

compute on stochastic bit streams. We aim at minimizing the area of the circuits.

Such a problem is vastly different from the traditional circuit optimization problem.

Traditional optimization techniques at the logical level manipulate different logic im-

plementations of the same Boolean function. In a sense, the traditional optimization

algorithms search among a large number of logical implementations of a given Boolean

function and choose one that results the optimal area. For example, in two-level logic

optimization, the synthesis routine searches over different sum-of-product representa-

tions of a Boolean function and tries to find one with a minimum number of product

terms [35]. It should be noted that the traditional logic optimization does not change

93
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the underlying Boolean function: its mere object is to find a good implementation of

that Boolean function.

These traditional optimization techniques are not sufficient to fully minimize the

area of the circuits that compute on stochastic bit streams. In fact, a target probability

can be realized by two circuits with different Boolean functions. Figure 5.1 shows two

circuits generating the output probability 0.3 from the input probabilities 0.4 and 0.5.

Obviously, the two circuits have different Boolean functions; they even have different

numbers of inputs! In terms of area, the circuit in Figure 5.1(b) is superior to that in

Figure 5.1(a).

0.4

0.5

AND

0.5

AND
0.25

0.75

0.3x1

x2

x3

y

(a)

AND

0.4 0.6

0.5

0.3x1
x2

y

(b)

Figure 5.1: Two circuits generating the output probability 0.3 from the source proba-
bilities 0.4 and 0.5.

Thus, optimization for circuits operating on random bit streams mandates entirely

new techniques for manipulating Boolean functions. In searching for an optimal solution,

the algorithm must cut across rigid boundaries of different Boolean functions, examining

many different candidate solutions that generate the required output probability.

In this chapter, we focus on a fundamental problem pertaining to generating prob-

abilities: synthesizing an optimal circuit that generates an arbitrary given probability

value from a set of independent probabilistic inputs, each with an unbiased probability

value of 0.5.

5.1 Arithmetic Two-Level Minimization Problem

Given combinational logic with a single output and n inputs, if all inputs indepen-

dently have probability 0.5 of being one, then each input combination has probability
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1

2n of occurring. If the output of the combinational circuit represents a Bolean function

with exactly m minterms, then the probability that the output is one is m
2n . Thus, the

set of probabilities that can be realized by this model is {s|s = k
2n , k = 0, 1, . . . , 2n}.

Example 12

Table 5.1 shows a truth table for a Boolean function

y = x0x1 ∨ x2.
1

The last column shows the probability of each input combination occurring. If each input

variable has probability of 0.5 of being one, each input combination has probability of

1/8 of occurring. Since the Boolean function contains 5 minterms, the probability of y

being one is 5/8. �

Table 5.1: A truth table for the Boolean function y = x0x1∨x2. The last column shows
the probability of each input combination occurring, under the assumption that each
input variable has probability 0.5 of being one.

x0 x1 x2 y Probability
0 0 0 0 1/8
0 0 1 1 1/8
0 1 0 0 1/8
0 1 1 1 1/8
1 0 0 0 1/8
1 0 1 1 1/8
1 1 0 1 1/8
1 1 1 1 1/8

We consider the synthesis problem of implementing a probability m
2n , where 0 ≤

m ≤ 2n is an arbitrarily given integer. To implement the probability m
2n , we can simply

choose m input combinations and set their output values to be one. However, there are
1 In this chapter, we use the common notation to represent logical AND and logical negation: we

represent the AND of x and y as xy and the negation of x as x̄. However, we will use ∨ to represent
logical OR, since later we will use + to represent arithmetic addition.
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many ways to choose the m input combinations out of a total of 2n input combinations;

different choices may result in vastly different complexity of implementation. This mo-

tivates a new and interesting problem in logic synthesis:

What is the optimal way to synthesize logic that covers exactly m minterms if the

choice of which m minterms are covered does not matter?

The complexity of a logic circuit depends on its implementation. In this chapter,

we focus on the two-level implementation of logic circuit [35]. Since two-level logic

synthesis plays an important role in multilevel logic synthesis [36], we believe that

first understanding the two-level version of the synthesis problem will facilitate future

research in tackling the multilevel version.

Minimizing the area of the two-level implementation is equivalent to minimizing

the number of product terms of the sum-of-product (SOP) representation of a Boolean

function [37]. Thus, the problem, which we will refer to as the arithmetic two-level

minimization problem, can be formulated as:

Given integers n > 0 and 0 ≤ m ≤ 2n, find an n-variable Boolean function f with

exactly m minterms and having a sum-of-product expression with the minimum num-

ber η of products.

Example 13

Suppose that we want to synthesize a 4-variable Boolean function with 7 minterms. This

is equivalent to filling in the Karnaugh map of 4 variables with exactly 7 ones. Figure 5.2

shows two different ways to fill ones in. The optimal SOP Boolean expression for the

function shown in Figure 5.2(a) is

x̄0x̄2 ∨ x̄0x3 ∨ x1x2x3,



97

which contains three product terms. The optimal SOP Boolean expression for the

function shown in Figure 5.2(b) is

x̄0x̄2 ∨ x1x3,

which contains two product terms.

We can see that different choices for filling in 7 ones in the Karnaugh map can

lead to optimal SOP Boolean expressions with different numbers of product terms. In

this example, the second way to fill ones in is better than the first one. Indeed, it is

an optimal filling of 7 ones that gives an SOP Boolean expression with the minimum

number of products. �

1 1

1

1

1

1 1

1 1

1 1

1 1

1

00 01 11 10

00

01

11

10

x0x1

x2x3
00 01 11 10

00

01

11

10

x0x1

x2x3

(a) (b)

Figure 5.2: The Karnaugh maps of two different Boolean functions both containing 7
minterms: (a) The optimal SOP expression is x̄0x̄2 ∨ x̄0x3 ∨ x1x2x3, which contains
three product terms. (b) The optimal SOP expression is x̄0x̄2 ∨ x1x3, which contains
two product terms.

In traditional two-level logic synthesis, a Boolean product term is also known as a

cube. In what follows, we will refer to a “product term” as a cube. For convenience, we

introduce the following notation.

Definition 6

Define V (f) to be the number of minterms contained in a Boolean function f . �

For the arithmetic two-level minimization problem, our proposed solution is based

on the inclusion-exclusion principle:
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Given λ cubes c0, . . . , cλ−1, the number of minterms cover by the union of the λ cubes

is

V

(
λ−1∨
i=0

ci

)
=

λ−1∑
i=0

V (ci)−
∑
i,j:

0≤i<j≤λ−1

V (cicj)

+
∑
i,j,k:

0≤i<j<k≤λ−1

V (cicjck)− · · ·+ (−1)λ−1V

(
λ−1∏
i=0

ci

)
.

(5.1)

The right-hand side of Equation (5.1) contains a set of numbers, each of which

corresponds to the number of minterms covered by the intersection of one of the subsets

of the set of cubes c0, . . . , cλ−1. We refer to this set of numbers as an intersection

pattern of the set of cubes. For example, given a set of three cubes c0, c1, and c2, its

intersection pattern consists of numbers V (c0), V (c1), V (c2), V (c0c1), V (c0c2), V (c1c2),

and V (c0c1c2).

We intend to apply a search-based approach to solve the arithmetic two-level mini-

mization problem. Initially, we will set λ to be a lower bound on the number of cubes

to cover m minterms [38]. Then we will test whether we can find λ cubes so that they

cover m minterms. In order to do so, we will first construct an intersection pattern

such that the sum of the elements in that pattern according to Equation (5.1) equals

the target value m. Then, we need to check whether we can find λ cubes to satisfy

that intersection pattern. If we find a solution, then we obtain an optimal solution to

the arithmetic two-level minimization problem. If not, we will try another intersection

pattern on λ cubes. After a number of unsuccessful trials, we will increase λ by one.

Example 14

Synthesize an optimal SOP Boolean expression on 4 variables to cover 11 minterms.

Since we cannot cover 11 minterms with just 1 cube, the lower bound on the number

of cubes is 2. Thus, initially, we set λ = 2. For λ = 2, we first construct an intersection



99

pattern {V (c0), V (c1), V (c0c1)}, so that

V (c0) + V (c1)− V (c0c1) = 11.

One intersection pattern that satisfies the above equation has elements as V (c0) =

8, V (c1) = 4, and V (c0c1) = 1. However, we cannot find two cubes to satisfy this

intersection pattern. Thus, we will try other intersection patterns on 2 cubes which

cover 11 minterms. Indeed, there are no other intersection patterns on 2 cubes to cover

11 minterms. Then, we raise λ to 3.

For λ = 3, we first construct intersection pattern

{V (c0), V (c1), V (c2), V (c0c1), V (c0c2), V (c1c2), V (c0c1c2)},

so that

V (c0) + V (c1) + V (c2)− V (c0c1)− V (c0c2)

− V (c1c2) + V (c0c1c2) = 11.

One intersection pattern that satisfies the above equation has elements as V (c0) = 8,

V (c1) = 2, V (c2) = 1, and V (c0c1) = V (c0c2) = V (c1c2) = V (c0c1c2) = 0. We could

synthesize cubes c0 = x0, c1 = x̄0x1x2, and c2 = x̄0x̄1x̄2x3 to satisfy the given inter-

section pattern. Thus, we get an optimal solution of 3 cubes to the original arithmetic

two-level minimization problem. �

5.2 λ-Cube Intersection Problem

A crucial step for our proposed solution to the arithmetic two-level minimization

problem is to answer the following question: given a set of numbers that corresponds to

an intersection pattern of λ cubes, how can one synthesize a set of λ cubes to satisfy the

given intersection pattern, or prove that there is no solution to the given intersection

pattern? We will call this problem as the λ-cube intersection problem. It is the focus of

this chapter.
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Example 15

In a 3-cube intersection problem on 4 variables x0, x1, x2, x3, if we are given the inter-

section pattern as

V (c0) = 4, V (c1) = 8, V (c2) = 4,

V (c0c1) = V (c0c2) = V (c1c2) = 2, V (c0c1c2) = 1,

we can synthesize cubes c0 = x0x1, c1 = x2, and c2 = x1x3 to satisfy the intersection

pattern.

In another 2-cube intersection problem on 4 variables x0, . . . , x3, if we are given the

intersection pattern as

V (c0) = 4, V (c1) = 8, V (c0c1) = 1,

it is easily seen from the Karnaugh map on 4 variables that there does not exist a set

of 2 cubes to satisfy the given intersection pattern. �

In the rest of this section, we will first introduce some basic definitions. Then,

we will give a formal definition of the λ-cube intersection problem. Some of the basic

definitions are adopted from [39].

The n variables of a Boolean function are denoted by x0, . . . , xn−1. For a variable

x, x and x̄ are referred to as literals. A cube, denoted by c, is a conjunction of literals

such that x and x̄ do not appear simultaneously. For example, x1x̄2x̄3 is a cube. A

minterm is a cube in which each of the n variables appear exactly once, in either its

complemented or uncomplemented form. If cube c2 takes the value one whenever cube

c1 equals one, we say that cube c1 implies cube c2 and write as c1 ⊆ c2. If cube c1

implies cube c2, then we have V (c1) ≤ V (c2). If c1 · c2 = 0, we say that cube c1 and

cube c2 are disjoint.

If a cube c contains k literals (0 ≤ k ≤ n), then the number of minterms contained

in the cube is V (c) = 2n−k. Note that when a cube contains 0 literals, it is a special

cube c = 1, which contains all minterms in the entire Boolean space. There is another
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special cube called empty cube, which is c = 0. The number of minterms contained in

an empty cube is V (c) = 0. Thus, the number of minterms contained in a cube is in

the set S = {s|s = 0 or s = 2k, k = 0, 1, . . . , n}.

To make the representation compact, we use the following definitions.

Definition 7

Given two integers A and B, let their binary representation be A =
∑k−1

i=0 ai2
i and

B =
∑k−1

i=0 bi2
i, where ai, bi ∈ {0, 1}. We write A � B if for all 0 ≤ i ≤ k − 1, ai ≥ bi;

we write A � B if for all 0 ≤ i ≤ k − 1, ai ≤ bi. �

Definition 8

Given a cube c and a γ ∈ {0, 1}, define

cγ =


1, if γ = 0

c, if γ = 1.

Given a set of λ cubes c0, . . . , cλ−1 and an integer Γ =
∑λ−1

i=0 γi2
i, where γi ∈ {0, 1},

define CΓ to be the intersection of a subset of cubes ci’s for those i’s such that γi = 1,

i.e., CΓ =
∏λ−1
i=0 c

γi
i . �

Definition 9

For an integer a ≥ 0, define ||a|| to be the number of ones in the binary representation

of a. More formally, suppose that a can be represented as a =
∑k−1

i=0 ai2
i with all

ai ∈ {0, 1}. Then, ||a|| =
∑k−1

i=0 ai. �

For example, ||7|| = 1 + 1 + 1 = 3.

With the above definition, we can more formally define the λ-cube intersection prob-

lem as follows:

Given n > 0, λ > 0, and a vector of 2λ numbers (v0, v1, . . . v2λ−1), determine whether

there exists a set of λ cubes c0, . . . , cλ−1 on n variables x0, . . . , xn−1, such that for all
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0 ≤ Γ ≤ 2λ − 1, V (CΓ) = vΓ.

We refer to the vector of numbers (v0, . . . , v2λ−1) as an intersection pattern on λ

cubes, or simply as an intersection pattern. If a set of λ cubes c0, . . . , cλ−1 satisfies the

property that for any 0 ≤ Γ ≤ 2λ − 1, V (CΓ) = vΓ, then we say that the set of cubes

satisfies the intersection pattern (v0, . . . , v2λ−1).

If there exists a set of λ cubes to satisfy the intersection pattern, then for all 0 ≤

Γ ≤ 2λ − 1, we have

vΓ = V (CΓ) ∈ S = {s|s = 0 or s = 2k, k = 0, 1, . . . , n}.

Further, the number v0 = V (C0) = V (1) = 2n. Thus, in the remaining of the chapter,

we will only consider the instances of the problem with v0 = 2n and v1, . . . , v2λ−1 ∈ S.

For the other instances of the problem, it is obvious that no solution exists. Since it is

more meaningful to consider a set of nonempty cubes c0, . . . , cλ−1, we assume that for

any 0 ≤ i ≤ λ− 1, v2i > 0.

Based on the given intersection pattern, we define some sets as follows.

Definition 10

Let the set P be the set of numbers Γ such that vΓ > 0 and let the set Z be the set of

numbers Γ such that vΓ = 0, i.e.,

P = {Γ|0 ≤ Γ ≤ 2λ − 1 and vΓ > 0},

Z = {Γ|0 ≤ Γ ≤ 2λ − 1 and vΓ = 0}.

For any 0 ≤ i ≤ λ, let the set Pi be the set of numbers Γ such that the number of ones

in the binary representation of Γ is i and vΓ > 0; let the set Zi be the set of Γ such that

the number of ones in the binary representation of Γ is i and vΓ = 0, i.e.,

Pi = {Γ|0 ≤ Γ ≤ 2λ − 1, ||Γ|| = i, and vΓ > 0},

Zi = {Γ|0 ≤ Γ ≤ 2λ − 1, ||Γ|| = i, and vΓ = 0}. �
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From the definition of P and Z, we have the following straightforward lemma, which

gives a necessary condition on the existence of λ cubes to satisfy the given intersection

pattern.

Lemma 4

If a set of λ cubes c0, . . . , cλ−1 satisfies the given intersection pattern, then for any

Γ ∈ P , CΓ 6= 0 and for any Γ ∈ Z, CΓ = 0. �

For any Γ ∈ P , we define a number kΓ as follows.

Definition 11

For any Γ ∈ P , define kΓ = log2(vΓ). �

Since we assume that vΓ ∈ S = {s|s = 0 or s = 2k, k = 0, 1, . . . , n}, thus for any

Γ ∈ P , kΓ is an integer and 0 ≤ kΓ ≤ n. Note that since v0 = 2n, we have k0 = n.

For convenience, we represent a cube as a cube-variable row vector and a set of cubes

as a cube-variable matrix. These are defined as follows.

Definition 12

Given a nonempty cube c on n variables x0, . . . , xn−1, we represent it by a cube-variable

row vector U of length n, whose elements are from the set {0, 1, ∗}. If the j-th (0 ≤

j ≤ n − 1) element Uj = 1, then the literal xj appears in the cube c; if Uj = 0, then

the literal x̄j appears in the cube c; if Uj = ∗, then the cube c does not depend on the

variable xj , i.e., neither literal xj nor literal x̄j appears in the cube c.

Given a set of λ nonempty cubes c0, . . . , cλ−1 on n variables x0, . . . , xn−1, we repre-

sent them by a cube-variable matrix D of size λ× n, so that the i-th row of the matrix

is the cube-variable row vector of ci. �

For example, a set of two cubes c0 = x0x̄1 and c1 = x̄0x2 is represented as a cube-

variable matrix 1 0 ∗

0 ∗ 1





104

Given a cube-variable row vector, the following simple lemma suggests how to obtain

the number of minterms covered by the corresponding cube.

Lemma 5

If the cube-variable row vector of a nonempty cube contains k ∗’s, then the cube covers

2k number of minterms. �

Definition 13

For a value a in {0, 1, ∗}, the negation of a is defined as follows:

ā =


1, if a = 0

0, if a = 1

∗, if a = ∗.

The negation of a cube-variable matrix (column vector) is the element-wise negation of

the matrix (column vector). �

In what follows, we will say that a cube-variable matrix satisfies the given intersection

pattern if the corresponding set of cubes satisfies the intersection pattern. The following

lemma is straightforward.

Lemma 6

Suppose that a cube-variable matrix D satisfies the intersection pattern (v0, . . . , v2λ−1).

Then D′ satisfies the same intersection pattern if D′ is obtained from D by column

permutation or column negation. �

Before we go through the details of our proposed solution, we will briefly talk about

the basic idea of our solution. Our solution is a column-based method: synthesizing

a cube-variable matrix is equivalent to determining what each column of the matrix

should be. Since each entry of the matrix is in the set {0, 1, ∗}, each column, which has

λ entries, has a total of 3λ choices. Indeed, by the symmetry between different column

choices and the disjoint relation among some cubes, we only need to consider a small

subset of all 3λ column choices as the candidate choices. Furthermore, by Lemma 6,
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since the order of the column does not matter, we only need to determine the number

of occurrences of each candidate column choice in the cube-variable matrix, which we

treat as unknowns. We establish a system of equations over those unknowns and the

given intersection pattern. The λ-cube intersection problem can be solved by finding a

non-negative solution to the system of equations.

5.3 A Special Case of the λ-Cube Intersection Problem

Here we consider a specific case in which v2λ−1 > 0. First, we have the following

theorem, which gives a necessary condition for the existence of a cube-variable matrix

to satisfy the given intersection pattern.

Theorem 14

If v2λ−1 > 0 and there exists a cube-variable matrix to satisfy the λ-cube intersection

problem, then for any 0 ≤ Γ ≤ 2λ − 1, Γ ∈ P . �

Proof. Based on Definition 8, for any 0 ≤ Γ ≤ 2λ−1, we have C2λ−1 ⊆ CΓ. Therefore,

0 < v2λ−1 = V (C2λ−1) ≤ V (CΓ) = vΓ.

By the definition of the set P , we have Γ ∈ P . �

In what follows, we will assume that there exists a cube-variable matrix D to satisfy

the given intersection pattern. Without loss of generality, we can assume that each

entry of the cube-variable matrix is either 1 or ∗. Since
∏λ−1
i=0 ci 6= 0, no column of the

matrix D simultaneously contains both a 0 and a 1. Otherwise,
∏λ−1
i=0 ci = 0. Therefore,

each column of the matrix D contains either only 0’s and ∗’s or only 1’s and ∗’s. By

Lemma 6, if we negate those columns of the matrix D that contain only 0’s and ∗’s,

then we obtain a new matrix D′ which still satisfies the given intersection pattern. Note

that the matrix D′ only contains 1’s and ∗’s. Thus, we could assume that each column
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of the cube-variable matrix is in the set {1, ∗}λ. The set {1, ∗}λ contains 2λ elements.

We denote those elements by ψ0, ψ1, . . . , ψ2λ−1 as follows:

Definition 14

Given any 0 ≤ Γ ≤ 2λ − 1, suppose that Γ =
∑λ−1

i=0 γi2
i, where γi ∈ {0, 1}. Define ψΓ

to be a column vector of length λ with entries from the set {1, ∗}, such that the i-th

element (0 ≤ i ≤ λ− 1) of it is

(ψΓ)i =


1, if γi = 0

∗, if γi = 1.

Define the set Ψ = {ψ0, ψ1, . . . , ψ2λ−1}. �

For example, if λ = 3, then ψ0 = (1, 1, 1)T and ψ5 = (∗, 1, ∗)T .2

The basic idea of our proposed solution is to determine which column patterns from

the set Ψ should be present in the cube-variable matrix. Indeed, as pointed out at the

end of Section 5.2, we only need to determine how many column patterns of the form

ψΓ are present in the matrix. We define the number of occurrences of column pattern

ψΓ as zΓ.

Definition 15

For any 0 ≤ Γ ≤ 2λ − 1, define JΓ to be the set of indices of the columns in the matrix

D of the form ψΓ, i.e., JΓ = {j|D·j = ψΓ}. Define zΓ to be the cardinality of the set JΓ.

�

In the special case, if there exists a cube-variable matrix to satisfy the intersection

pattern, then based on Theorem 14, we have P = {0, 1, . . . , 2λ − 1}. Thus, based on

Definition 11, we have a set of numbers k0, . . . , k2λ−1. The following theorem gives

relation between {z0, . . . z2λ−1} and {k0, . . . , k2λ−1}.

2 The superscript T here means the transpose of a matrix.
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Theorem 15

If there exists a cube-variable matrix D to satisfy the intersection pattern, then for all

0 ≤ L ≤ 2λ − 1, we have

kL =
∑

0≤Γ≤2λ−1:Γ�L

zΓ. (5.2)

�

Proof. Since the total number of columns in matrix D is n, we have
∑2λ−1

Γ=0 zΓ = n =

k0, or ∑
0≤Γ≤2λ−1:Γ�0

zΓ = k0.

Thus, Equation (5.2) holds for L = 0.

Now consider 1 ≤ L ≤ 2λ − 1. Then L can be represented as L =
∑r−1

j=0 2lj , where

1 ≤ r ≤ λ and 0 ≤ l0 < · · · < lr−1 ≤ λ − 1. Then, CL represents the intersection

of the set of cubes cl0 , . . . , clr−1 . The i-th entry in the cube-variable row vector of the

intersection CL is ∗ if and only if the column D·i has ∗’s on the row l0, l1, . . . , lr−1.

Therefore, on the one hand, the number of ∗’s in the cube-variable row vector of the

intersection CL is the number of columns in D whose entries on the row l0, l1, . . . , lr−1

are all ∗’s, or mathematically, the sum ∑
0≤Γ≤2λ−1:

(ψΓ)l0=···=(ψΓ)lr−1
=∗

zΓ.

On the other hand,by Lemma 5, since V (CL) = vL = 2kL , the number of ∗’s in the

cube-variable row vector of CL is kL. Therefore, we have

kL =
∑

0≤Γ≤2λ−1:
(ψΓ)l0=···=(ψΓ)lr−1

=∗

zΓ =
∑

0≤Γ≤2λ−1,

Γ=
∑λ−1
i=0 γi2

i:
γl0=···=γlr−1

=1

zΓ, (5.3)

By Definition 7, we can rewrite Equation (5.3) as

kL =
∑

0≤Γ≤2λ−1:Γ�L

zΓ. �
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Note that Equation (5.2) is a linear equation on z0, . . . , z2λ−1 and holds for all

0 ≤ L ≤ 2λ − 1. Therefore, we can derive a system of 2λ linear equations on unknowns

z0, . . . , z2λ−1: ∑
0≤Γ≤2λ−1:Γ�L

zΓ = kL, for L = 0, 1, . . . , 2λ − 1. (5.4)

We can represent the above system of linear equations in matrix form, as shown by

the following theorem.

Theorem 16

Let vector ~k = (k0, . . . , k2λ−1)T and vector ~z = (z0, . . . , z2λ−1)T . Then we can represent

the system of 2λ linear equations (5.4) in matrix form as

Rλ~z = ~k, (5.5)

where Rλ is a 2λ × 2λ square matrix defined recursively as follows:

R1 =

1 1

0 1

 , Ri =

Ri−1 Ri−1

0 Ri−1

 , for i = 2, . . . , λ. �

Proof. For convenience, we use ~z[j, k] (0 ≤ j ≤ k ≤ 2λ − 1) to represent the column

vector (zj , . . . , zk)T .

We claim that given any 1 ≤ i ≤ λ, the set of 2i linear expressions

∑
0≤Γ≤2i−1:Γ�L

zΓ, for L = 0, 1, . . . , 2i − 1

can be represented in matrix form as

Ri~z[0, 2i − 1].

We prove this claim by induction on i.
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Base case: When i = 1, the set of 2 linear expressions
∑

0≤Γ≤1:Γ�0

zΓ

∑
0≤Γ≤1:Γ�1

zΓ

is 
z0 + z1

z1

Therefore, in the matrix form, the set of expressions can be represented as

R1~z[0, 1].

Inductive step: Assume that the claim holds for i. Now consider the set of 2i+1 linear

expressions ∑
0≤Γ≤2i+1−1:Γ�L

zΓ, for L = 0, 1, . . . , 2i+1 − 1.

For any 0 ≤ L ≤ 2i+1 − 1, we have∑
0≤Γ≤2i+1−1:

Γ�L

zΓ =
∑

0≤Γ≤2i−1:
Γ�L

zΓ +
∑

2i≤Γ≤2i+1−1:
Γ�L

zΓ

=
∑

0≤Γ≤2i−1:
Γ�L

zΓ +
∑

0≤Γ≤2i−1:
(Γ+2i)�L

zΓ+2i .
(5.6)

When 0 ≤ L ≤ 2i − 1, it is not hard to see that

{Γ|0 ≤ Γ ≤ 2i − 1, (Γ + 2i) � L} = {Γ|0 ≤ Γ ≤ 2i − 1,Γ � L}.

Thus, from Equation (5.6), for any 0 ≤ L ≤ 2i − 1, we have∑
0≤Γ≤2i+1−1:Γ�L

zΓ =
∑

0≤Γ≤2i−1:Γ�L

zΓ +
∑

0≤Γ≤2i−1:Γ�L

zΓ+2i .

By the induction hypothesis, the first 2i expressions∑
0≤Γ≤2i+1−1:Γ�L

zΓ, for L = 0, . . . , 2i − 1
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can be represented in matrix form as

Ri~z[0, 2i − 1] +Ri~z[2i, 2i+1 − 1]. (5.7)

When 2i ≤ L ≤ 2i+1 − 1, it is not hard to see that

{Γ|0 ≤ Γ ≤ 2i − 1,Γ � L} = φ,

{Γ|0 ≤ Γ ≤ 2i − 1, (Γ + 2i) � L} = {Γ|0 ≤ Γ ≤ 2i − 1,Γ � (L− 2i)}.

Therefore, from Equation (5.6), for any 2i ≤ L ≤ 2i+1 − 1, we have∑
0≤Γ≤2i+1−1:Γ�L

zΓ =
∑

0≤Γ≤2i−1:Γ�(L−2i)

zΓ+2i .

Note that 0 ≤ L−2i ≤ 2i−1. Thus, by the induction hypothesis, the last 2i expressions∑
0≤Γ≤2i+1−1:Γ�L

zΓ, for L = 2i, . . . , 2i+1 − 1

can be represented in matrix form as

Ri~z[2i, 2i+1 − 1]. (5.8)

Based on Equation (5.7) and (5.8), the set of linear expressions∑
0≤Γ≤2i+1−1:Γ�L

zΓ, for L = 0, . . . , 2i+1 − 1

can be represented in matrix form asRi Ri

0 Ri

 ~z[0, 2i − 1]

~z[2i, 2i+1 − 1]

 = Ri+1~z[0, 2i+1 − 1].

Therefore, the claim holds for i + 1. Thus, by induction, the claim holds for all

i = 1, 2, . . . , λ.

Thus, the system of linear equations∑
0≤Γ≤2λ−1:Γ�L

zΓ = kL, for L = 0, 1, . . . , 2λ − 1.
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can be represented in matrix form as

Rλ~z = ~k. �

It is not hard to see that det(Rλ) = 1. Therefore, Rλ is invertible. The following

theorem shows what R−1
λ is.

Theorem 17

R−1
λ is recursively defined as follows:

R−1
1 =

1 −1

0 1

 , R−1
i =

R−1
i−1 −R−1

i−1

0 R−1
i−1

 , for i = 2, . . . , λ. �

Proof. We only need to show that for i = 1, . . . , λ, R−1
i Ri = I2i . We prove this claim

by induction on i.

Base case: When i = 1,

R−1
1 R1 =

1 −1

0 1

1 1

0 1

 =

1 0

0 1

 .
Inductive step: Assume the claim holds for i. Then, based on the induction hypoth-

esis,

R−1
i+1Ri+1 =

R−1
i −R−1

i

0 R−1
i

Ri Ri

0 Ri

 =

I2i 0

0 I2i

 = I2i+1 .

Therefore, the claim holds for i + 1. Thus, by induction, the claim holds for all

i = 1, . . . , λ. �

Therefore, given k0, k1, . . . , k2λ−1, we can get z0, z1, . . . , z2λ−1 as ~z = R−1
λ
~k.

Since for any 0 ≤ Γ ≤ 2λ − 1, zΓ is the cardinality of the set JΓ, therefore, zΓ

must be a non-negative integer. By Theorem 17, R−1
λ is an integer matrix. Therefore,

z0, . . . , z2λ−1 are always integers. Thus, a necessary condition for the existence of λ
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cubes to satisfy the given intersection pattern is that the vector R−1
λ
~k has all entries

non-negative. On the other hand, from Equation (5.5), we can see that the intersection

pattern (2k0 , . . . , 2k2λ−1) only depends on z0, . . . , z2λ−1. Therefore, as long as the vector

R−1
λ
~k has all entries non-negative, there exist λ cubes to satisfy the given intersection

pattern. In fact, we can construct λ cubes with their cube-variable matrix as follows:

for any column 0 ≤ j ≤ n− 1 of D, we can find a 0 ≤ Γ ≤ 2λ − 1 such that
∑Γ−1

i=0 zi ≤

j ≤
∑Γ

i=0 zi − 1. Then, we let D·j = ψΓ. In summary, we have the following corollary.

Corollary 3

The necessary and sufficient condition for the existence of λ cubes to satisfy the given

intersection pattern is that the vector R−1
λ
~k has all entries non-negative, where ~k =

(k0, k1, . . . , k2λ−1)T and R−1
λ is defined in Theorem 17. �

Example 16

Given v0 = 32, v1 = 16, v2 = 16, v3 = 8, v4 = 8, v5 = 4, v6 = 4, and v7 = 2, determine

whether there exists a set of three cubes c0, c1, and c2 on 5 variables that satisfies the

intersection pattern (v0, . . . , v7).

Solution: From the given coditions, we have

~k = (5, 4, 4, 3, 3, 2, 2, 1)T .

Since

R−1
3 =



1 −1 −1 1 −1 1 1 −1

0 1 0 −1 0 −1 0 1

0 0 1 −1 0 0 −1 1

0 0 0 1 0 0 0 −1

0 0 0 0 1 −1 −1 1

0 0 0 0 0 1 0 −1

0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 1



,
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then by Equation (5.5), we get

~z = (0, 0, 0, 2, 0, 1, 1, 1)T .

Therefore, there are two ψ3’s, one ψ5, one ψ6, and one ψ7 in the cube-variable matrix

of c0, c1, and c2. One realization of the cube-variable matrix is
∗ ∗ ∗ 1 ∗

∗ ∗ 1 ∗ ∗

1 1 ∗ ∗ ∗


and the corresponding cubes are c0 = x3, c1 = x2, and c2 = x0 ∧ x1. �

5.4 General λ-Cube Intersection Problem

In this section, we consider the more general situation where v2λ−1 ≥ 0.

5.4.1 Necessary Conditions on the Positive vΓ’s

We first have the following theorem applicable for numbers vΓ > 0.

Theorem 18

Suppose that there exist λ cubes c0, . . . , cλ−1 to satisfy the intersection pattern. For

any 0 ≤ L ≤ 2λ − 1, if vL > 0, then for any 0 ≤ Γ ≤ 2λ − 1 such that Γ � L, we have

vΓ > 0. �

Proof. For any 0 ≤ Γ ≤ 2λ − 1 such that Γ � L, it is not hard to see that CL ⊆ CΓ.

Therefore, 0 < vL = V (CL) ≤ V (CΓ) = vΓ. �

If a set of cubes is pairwise non-disjoint, then it has the following property.

Lemma 7

If a set of r cubes cl0 , . . . , clr−1 (3 ≤ r ≤ λ, 0 ≤ l0 < · · · < lr−1 ≤ λ − 1) is pairwise

non-disjoint, i.e., for any 0 ≤ i < j ≤ r − 1, cli · clj 6= 0, then their intersection
∏r−1
i=0 cli

is nonempty. �
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Proof. By contraposition, suppose that
∏r−1
i=0 cli = 0. Consider the cube-variable

matrix on these r cubes. Since their intersection is empty, there exists a column in the

matrix that contains both a 0 and a 1. The cube corresponding to the 0 entry and the

cube corresponding to the 1 entry are disjoint. This contradicts the assumption that

the given set of cubes is pairwise non-disjoint. �

Alternatively, Lemma 7 can be stated on the numbers vΓ. This gives a necessary

condition for the existence of a set of cubes to satisfy the given intersection pattern.

Theorem 19

Suppose that there exist λ cubes c0, . . . , cλ−1 to satisfy the given intersection pattern.

If a set of r (3 ≤ r ≤ λ) numbers 0 ≤ l0 < · · · < lr−1 ≤ λ − 1 satisfies that for any

0 ≤ i < j ≤ r − 1, v
(2li+2lj )

> 0, then for L =
∑r−1

i=0 2li , vL > 0. �

For example, suppose that in a 4-cube intersection problem we are given v3 > 0,

v9 > 0, and v10 > 0. If there exist 4 cubes to satisfy the given intersection pattern, then

since V (c0c1) > 0, V (c0c3) > 0, and V (c1c3) > 0, we must have v11 = V (c0c1c3) > 0.

If both the conditions in Theorem 18 and 19 are satisfied, then we have the follow-

ing theorem, which will play an important role in proving the necessary and sufficient

condition later.

Theorem 20

Suppose that the given intersection pattern satisfies that

1. For any 0 ≤ L ≤ 2λ − 1, if vL > 0, then for any 0 ≤ Γ ≤ 2λ − 1 such that Γ � L,

vΓ > 0.

2. For any set of r (3 ≤ r ≤ λ) numbers 0 ≤ l0 < · · · < lr−1 ≤ λ − 1, if it satisfies

that for any 0 ≤ i < j ≤ r − 1, v
(2li+2lj )

> 0, then for the number L =
∑r−1

i=0 2li ,

vL > 0.
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Then, a necessary and sufficient condition for a set of λ nonempty cubes to satisfy the

condition that for any Γ ∈ P , CΓ 6= 0 and for any Γ ∈ Z, CΓ = 0 is that for any Γ ∈ P2,

CΓ 6= 0 and for any Γ ∈ Z2, CΓ = 0. �

Proof. The necessary part of the theorem is obvious, since the set P2 is a subset of

the set P and the set Z2 is a subset of the set Z.

Now we prove the sufficient part. Suppose that a set of cubes satisfies that for any

Γ ∈ P2, CΓ 6= 0 and for any Γ ∈ Z2, CΓ = 0.

It is not hard to see that the sets P0, . . . , Pλ form a partition of the set P and that

the sets Z0, . . . , Zλ form a partition of the set Z. Thus, we only need to prove that for

all 0 ≤ k ≤ λ, the set of cubes satisfies the condition that for any Γ ∈ Pk, CΓ 6= 0 and

for any Γ ∈ Zk, CΓ = 0.

We first consider the case that k = 0. By convention, v0 > 0. Thus, P0 = {0} and

Z0 = φ. Since C0 = 1, thus we have that for any Γ ∈ P0, CΓ 6= 0. Since Z0 = φ, the

statement that for any Γ ∈ Z0, CΓ = 0 also holds.

Now we consider the case that k = 1. Since we assume that for any 0 ≤ i ≤ λ− 1,

v2i > 0, therefore, P1 = {2i|i = 0, . . . , λ − 1} and Z1 = φ. Since c0, . . . , cλ−1 are all

nonempty, thus we have that for any Γ ∈ P1, CΓ 6= 0. Since Z1 = φ, the statement that

for any Γ ∈ Z1, CΓ = 0 also holds.

When k = 2, the statement that the set of cubes satisfies that for any Γ ∈ P2,

CΓ 6= 0 and for any Γ ∈ Z2, CΓ = 0 obviously holds.

Now we consider the case that k ≥ 3. First, we consider any L ∈ Pk. Suppose

that L =
∑r−1

i=0 2li , where 3 ≤ r ≤ λ and 0 ≤ l0 < · · · < lr−1 ≤ λ − 1. Then, for any

0 ≤ i < j ≤ r − 1, (2li + 2lj ) � L. Therefore, based on the given condition, we have

v
(2li+2lj )

> 0. Since ||2li+2lj || = 2, thus (2li+2lj ) ∈ P2. By the assumption that for any

Γ ∈ P2, CΓ 6= 0, we have that C(2li+2lj ) = cli · clj 6= 0. Thus, the r cubes cl0 , . . . , clr−1

are pairwise non-disjoint. By Lemma 7, then CL =
∏r−1
i=0 cli 6= 0. Therefore, for any

L ∈ Pk, CL 6= 0.
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Now we consider any L ∈ Zk. Suppose that L =
∑r−1

i=0 2li , where 3 ≤ r ≤ λ and

0 ≤ l0 < · · · < lr−1 ≤ λ− 1. We argue that there exist two numbers 0 ≤ u < v ≤ r − 1,

such that v(2lu+2lv ) = 0. Otherwise, for any 0 ≤ i < j ≤ r − 1, v
(2li+2lj )

> 0. Then,

based on the given conditions, we have vL > 0. This contradicts the assumption that

L ∈ Zk. Thus, there exist two numbers 0 ≤ u < v ≤ r − 1, such that v(2lu+2lv ) = 0.

Since ||2lu + 2lv || = 2, thus (2lu + 2lv) ∈ Z2. By the assumption that for any Γ ∈ Z2,

CΓ = 0, we have that C(2lu+2lv ) = clu · clv = 0. Thus, CL =
∏r−1
i=0 cli = 0. Therefore,

for any L ∈ Zk, CL = 0. �

5.4.2 Compatible Column Pattern Set

In the general case, the cube-variable matrix consists of 0, 1 and ∗ and so does each

column of the matrix. There are a total of 3λ different choices of patterns for each

column. However, not all combinations of 0, 1 and ∗ as a column vector can be present

in the matrix. For example, if the given intersection pattern indicates that ci · cj 6= 0,

then those column patterns that have a 0 on the i-th entry and a 1 on the j-th entry

cannot be present in the matrix. On the other hand, some kinds of column patterns

must be present at least once in the matrix. For example, if the given intersection

pattern indicates that ci · cj = 0, then at least one of the column patterns that have a

0 on the i-th entry and a 1 on the j-th entry or have a 1 on the i-th entry and a 0 on

the j-th entry must be present in the matrix. In this section, we will show what kind

of column patterns can be present in the matrix. For this purpose, we first introduce

the compatible column pattern set for numbers Γ ∈ Z2.

Definition 16

Suppose that Γ ∈ Z2 and Γ = 2i + 2j , where 0 ≤ i < j ≤ λ− 1. The compatible column

pattern set for Γ is the set of column vectors W of length λ with entries from the set

{0, 1, ∗}, such that

1. Wi = 0 and Wj = 1 or Wi = 1 and Wj = 0,
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2. for any number L ∈ P2 such that L = 2k + 2l, where 0 ≤ k < l ≤ λ − 1, the

situation that Wk = 0 and Wl = 1 or Wk = 1 and Wl = 0 does not happen. �

It is not hard to see that if a cube-variable column vector is in the compatible column

pattern set for a Γ ∈ Z2, then the negation of that cube-variable column vector is also

in that set. Therefore, we define the representative compatible column pattern set as

follows.

Definition 17

The representative compatible column pattern set ρΓ for Γ ∈ Z2 is a subset of the

compatible column pattern set for Γ such that the first non-∗ entry of each element in

the representative set is 0. �

Example 17

Consider a 4-cube intersection problem with

P2 = {(0011)2, (0101)2, (1001)2},

Z2 = {(0110)2, (1010)2, (1100)2}.

The compatible column pattern set for Γ = (0110)2 ∈ Z2 is

{(∗010)T , (∗101)T , (∗011)T , (∗100)T , (∗01∗)T , (∗10∗)T }.

The representative compatible column pattern set for Γ = (0110)2 is

{(∗010)T , (∗011)T , (∗01∗)T }. �

Definition 18

We define the set Y as the union of the representative compatible column pattern sets

ρΓ for all Γ ∈ Z2, i.e., Y =
⋃

Γ∈Z2
ρΓ. We define the set F = Y ∪Ψ. �

The following lemma shows that only those column patterns in the set F are needed

to construct the cube-variable matrix.
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Lemma 8

If there exists a cube-variable matrix D to satisfy the given intersection pattern, then

there exists another matrix D′ which also satisfies the given intersection pattern and

each column of which is in the set F . �

Proof. First, we argue that for any column of D which contains both a 0 and a 1

entry, the column is in the compatible column pattern set of a certain Γ ∈ Z2.

Suppose that a column r (0 ≤ r ≤ n − 1) of D has the i-th entry being 0 and the

j-th entry being 1, where 0 ≤ i, j ≤ λ− 1 and i 6= j. Then, ci · cj = 0. Since the matrix

D satisfies the given intersection pattern, we have v2i+2j = V (ci · cj) = 0. Therefore,

the number 2i+2j is in the set Z2. Now consider any L ∈ P2. Suppose that L = 2k+2l,

where 0 ≤ k < l ≤ λ− 1. Since the necessary condition for the cube-variable matrix to

satisfy a given intersection pattern is that for L ∈ P2, CL 6= 0, thus the situation that

Dkr = 0 and Dlr = 1 or Dkr = 1 and Dlr = 0 cannot happen. Therefore, the column r

of D is in the compatible column pattern set for the number (2i + 2j) ∈ Z2.

We can construct a D′ from D as follows. For any column 0 ≤ r ≤ λ− 1:

1. If D·r contains only 1’s and ∗’s, we let D′·r be D·r. Then D′·r is in the set Ψ.

2. If D·r contains only 0’s and ∗’s, we let D′·r be the negation of the column D·r.

Then D′·r is in the set Ψ.

3. If D·r contains both a 0 and a 1 and the first non-∗ entry of D·r is 0, we let D′·r

be D·r. Then, there exists a Γ ∈ Z2 such that D′·r is in the set ρΓ.

4. If D·r contains both a 0 and a 1 and the first non-∗ entry of D·r is 1, we let D′·r

be the negation of the column D·r. Then, there exists a Γ ∈ Z2 such that D′·r is

in the set ρΓ.

Then, by the above construction, each column of D′ is in the set F . Further, D′ is

obtained from D by column negations. Thus, by Lemma 6, D′ also satisfies the given
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intersection pattern. �

Based on Lemma 8, we only need to answer whether there exists a cube-variable

matrix with columns from the set F to satisfy the given intersection pattern. The

following lemma states that if such a matrix exists, then for each Γ ∈ Z2, at least one

of the column pattern elements from the set ρΓ must be present in that matrix.

Lemma 9

If a cube-variable matrix D with columns from the set F satisfies the given intersection

pattern, then for any Γ ∈ Z2, there exists a column in D which is in the set ρΓ. �

Proof. For any Γ ∈ Z2, suppose that Γ = 2i + 2j , where 0 ≤ i < j ≤ λ− 1. Since the

cube-variable matrix satisfies the given intersection pattern, then based on Lemma 4,

for the Γ ∈ Z2, we must have CΓ = 0 or ci · cj = 0. Thus, there must exist a column

r in D, such that Dir = 0 and Djr = 1 or Dir = 1 and Djr = 0. Now consider any

L ∈ P2. Suppose that L = 2k + 2l, where 0 ≤ k < l ≤ λ − 1. Since the necessary

condition for the cube-variable matrix to satisfy a given intersection pattern is that for

the L ∈ P2, CL 6= 0, the situation that Dkr = 0 and Dlr = 1 or Dkr = 1 and Dlr = 0

cannot happen. Therefore, the column r of D is in the compatible column pattern set

for Γ. Further, since all the columns of D are in the set F , then column r must be in

the set ρΓ. �

5.4.3 A Necessary and Sufficient Condition

In this section, we will show a necessary and sufficient condition for the existence

of a set of cubes to satisfy the given intersection pattern. As a byproduct, the proof

provides a way of synthesizing a set of cubes to satisfy the given intersection pattern.

Based on Lemma 8, we only need to consider cube-variable matrix that consists of

column patterns from the set F . The basic idea to solve the general case problem is
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similar to that applied in the special case — we will establish relations between the

numbers of occurrences of those elements of the set F in the cube-variable matrix and

the kΓ’s. First, we define root cube-variable matrix, which links the general case problem

to the special case problem we discussed in Section 5.3.

Definition 19

Given a cube-variable matrix D on λ cubes c0, . . . , cλ−1, we define root cube-variable

matrix t(D) of D as the cube-variable matrix formed by replacing the 0 entries in D

with 1’s and keeping the other entries in D unchanged. The set of cubes c′0, . . . , c
′
λ−1

corresponding to the root matrix is called the set of root cubes to the original set of

cubes. �

For example, the root matrix of the cube-variable matrix1 0 ∗

0 ∗ 1

 is

1 1 ∗

1 ∗ 1

 .
The set of root cubes is c′0 = x0x1 and c′1 = x0x2.

Based on the definition of the set of root cubes, we have the following lemma.

Lemma 10

Suppose that the set of root cubes to the set of original cubes c0, . . . , cλ−1 is c′0, . . . , c
′
λ−1.

Then, for any Γ ∈ P , we have V (C ′Γ) = V (CΓ). �

Proof. If Γ = 0, then obviously, V (C ′0) = 2n = V (C0). Now consider any Γ ∈ P such

that Γ 6= 0. Suppose that CΓ represents the intersection of a set of cubes cl0 , . . . , clr−1 ,

where 1 ≤ r ≤ λ and 0 ≤ l0 < · · · < lr−1 ≤ λ − 1. Let the cube-variable matrix

corresponding to the set of cubes cl0 , . . . , clr−1 be DΓ and the cube-variable matrix cor-

responding to the set of cubes c′l0 , . . . , c
′
lr−1

be D′Γ. Since V (CΓ) > 0, the intersection of

cl0 , . . . , clr−1 is nonempty. Based on the definition of the set of root cubes, each column

of the matrix D′Γ contains only 1’s and ∗’s. Therefore, the intersection of c′l0 , . . . , c
′
lr−1

is also nonempty. Since D′Γ is the root matrix of DΓ, the columns of D′Γ that contain

all ∗’s are in one-to-one correspondence to the columns of DΓ that contain all ∗’s. Since
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the number of ∗’s in the cube-variable row vector of the nonempty intersection of a set

of cubes equals the number of columns of the matrix that contain all ∗’s, the number

of ∗’s in the cube-variable row vector of C ′Γ equals that in the cube-variable row vector

of CΓ. By Lemma 5, we have V (C ′Γ) = V (CΓ). �

Since the root matrix t(D) is a matrix containing only 1’s and ∗’s, we can apply the

definition of zΓ in Definition 15 to t(D). Then, based on the fact that for any Γ ∈ P ,

V (C ′Γ) = V (CΓ) = 2kΓ , it is not hard to show that the following theorem characterizing

the relation between zΓ’s and kL’s holds.

Theorem 21

If there exist λ cubes to satisfy the given intersection pattern, then for any L ∈ P ,

∑
0≤Γ≤2λ−1:Γ�L

zΓ = kL,

where zΓ’s are defined on the root matrix t(D) according to Definition 15. �

Following a similar definition for a root cube-variable matrix, we define a root column

vector as follows.

Definition 20

Given a column vector W with each element in the set {0, 1, ∗}, define its root column

vector t(W ) as the column vector obtained from W by replacing the 0 entries in W with

1’s and keeping the other entries in W unchanged. �

Based on the definition of the root column vector, we can regroup the elements in the

set Y according to their root column vectors, which results in the following definition.

The relation between the elements in the set Y and their root column vectors will be

used later to derive a set of inequalities on the numbers of occurrences of the elements

of the set F in the cube-variable matrix (See Theorem 22).
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Definition 21

We define the set M to be the set of numbers 0 ≤ Γ ≤ 2λ − 1 such that there exists an

element in the set Y , whose root column vector is ψΓ, i.e.,

M = {Γ|0 ≤ Γ ≤ 2λ − 1, s.t. ∃W ∈ Y s.t. t(W ) = ψΓ}.

Define M as M = {Γ|0 ≤ Γ ≤ 2λ − 1,Γ 6∈M}.

For any Γ ∈M , we define the set YΓ to be the set of elements in the set Y such that

their root column vectors are ψΓ, i.e., YΓ = {W |W ∈ Y and t(W ) = ψΓ}. �

Notice that the sets YΓ (Γ ∈M) form a partition of the set Y .

Example 18

For the intersection pattern shown in Example 17, we have Z2 = {6, 10, 12} and

ρ6 = {(∗010)T , (∗011)T , (∗01∗)T },

ρ10 = {(∗001)T , (∗011)T , (∗0 ∗ 1)T },

ρ12 = {(∗010)T , (∗001)T , (∗ ∗ 01)T }.

Thus,

Y = {(∗010)T , (∗001)T , (∗011)T , (∗ ∗ 01)T , (∗0 ∗ 1)T , (∗01∗)T },

M = {1, 3, 5, 9},

and Y1 = {(∗010)T , (∗001)T , (∗011)T }, Y3 = {(∗ ∗ 01)T }, Y5 = {(∗0 ∗ 1)T }, and Y9 =

{(∗01∗)T }. �

Based on Lemma 8, we can assume that each column of the cube-variable matrix is

from the set F = Y ∪Ψ. To solve the general case problem, we only need to determine

the number of occurrences of each element of the set F in the cube-variable matrix. In

order to establish equations, we first define the number of occurrences of each element

of the set Y in the cube-variable matrix, which is actually defined on each partition YΓ

of Y , as stated by the following definition.
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Definition 22

For any Γ ∈ M , we let the |YΓ| elements in the set YΓ be δΓ,0, . . . , δΓ,|YΓ|−1. For any

0 ≤ i ≤ |YΓ| − 1, we define KΓ,i to be the set of indices of the columns in the matrix D

of the form δΓ,i, i.e., KΓ,i = {k|D·k = δΓ,i}. We define wΓ,i to be the cardinality of the

set KΓ,i. �

The following theorem establishes a set of linear inequalities on wΓ,i’s and zΓ’s, where

the zΓ’s are defined on the root matrix according to Definition 15.

Theorem 22

Suppose that there exists a cube-variable matrix D to satisfy the given intersection

pattern, whose columns are from the set F . Then, we have that for any Γ ∈M ,

|YΓ|−1∑
i=0

wΓ,i ≤ zΓ, (5.9)

where zΓ’s are defined on the root matrix t(D) according to Definition 15. We also have

that for any L ∈ Z2, ∑
Γ∈M,0≤i≤|YΓ|−1:

δΓ,i∈ρL

wΓ,i ≥ 1. (5.10)

�

Proof. Consider any Γ ∈M . For any number k ∈
⋃|YΓ|−1
i=0 KΓ,i, the column vector D·k

is in the set YΓ. Thus, the root column vector of D·k is ψΓ. Thus, k ∈ JΓ, where JΓ is

defined on the root matrix t(D). Therefore,
⋃|YΓ|−1
i=0 KΓ,i ⊆ JΓ. As a result, we have∣∣∣∣∣∣

|YΓ|−1⋃
i=0

KΓ,i

∣∣∣∣∣∣ ≤ |JΓ| ,

or
|YΓ|−1∑
i=0

wΓ,i ≤ zΓ.

By Lemma 9, for any L ∈ Z2, there exists a column in D which is in the set ρL.

Suppose that column is of the form δΓ∗,i∗ ∈ ρL, where Γ∗ ∈ M and 0 ≤ i ≤ |YΓ∗ | − 1.
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Thus,

1 ≤ wΓ∗,i∗ ≤
∑

Γ∈M,0≤i≤|YΓ|−1:
δΓ,i∈ρL

wΓ,i. �

Example 19

For the intersection pattern given in Example 17, based on the result shown in Exam-

ple 18, we have

δ1,0 = (∗010)T , δ1,1 = (∗001)T , δ1,2 = (∗011)T ,

δ3,0 = (∗ ∗ 01)T , δ5,0 = (∗0 ∗ 1)T , δ9,0 = (∗01∗)T .

The set of equations (5.9) for all Γ ∈M in this example is
wΓ,0 ≤ zΓ, for any Γ ∈ {3, 5, 9}

w1,0 + w1,1 + w1,2 ≤ z1

The set of equations (5.10) for all L ∈ Z2 in this example is
w1,0 + w1,2 + w9,0 ≥ 1

w1,1 + w1,2 + w5,0 ≥ 1

w1,0 + w1,1 + w3,0 ≥ 1

�

Finally, combining the conditions of Theorem 18, 19, 21, and 22, we can derive the

following necessary and sufficient condition.

Theorem 23

There exists a cube-variable matrixD to satisfy the given intersection pattern (v0, . . . , v2λ−1)

if and only if

1. for any 0 ≤ L ≤ 2λ − 1, if vL > 0, then for any 0 ≤ Γ ≤ 2λ − 1 such that Γ � L,

vΓ > 0,
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2. for any set of r (3 ≤ r ≤ λ) numbers 0 ≤ l0 < · · · < lr−1 ≤ λ − 1, if it satisfies

that for any 0 ≤ i < j ≤ r − 1, v
(2li+2lj )

> 0, then for the number L =
∑r−1

i=0 2li ,

vL > 0,

3. the system of equations on unknowns z̃Γ (for all 0 ≤ Γ ≤ 2λ − 1) and w̃Γ,i

(for all Γ ∈M and 0 ≤ i ≤ |YΓ| − 1)∑
0≤Γ≤2λ−1:Γ�L

z̃Γ = kL, for all L ∈ P

|YΓ|−1∑
i=0

w̃Γ,i ≤ z̃Γ, for all Γ ∈M

∑
Γ∈M,0≤i≤|YΓ|−1:

δΓ,i∈ρL

w̃Γ,i ≥ 1, for all L ∈ Z2

(5.11)

has a non-negative integer solution. �

Proof. “only if” part: Statement 1 in the theorem is due to Theorem 18 and Statement

2 in the theorem is due to Theorem 19.

Since D satisfies the given intersection pattern, then by Lemma 8, there exists

another matrix D′ which also satisfies the given intersection pattern and each column

of which is in the set F . For any 0 ≤ Γ ≤ 2λ − 1, let z̃Γ = zΓ, where zΓ’s are

defined on the root matrix t(D′) according to Definition 15. For any Γ ∈ M and

0 ≤ i ≤ |YΓ| − 1, let w̃Γ,i = wΓ,i, where wΓ,i’s are defined on the matrix D′ according

to Definition 22. By Theorem 21 and 22, the set of numbers z̃Γ and w̃Γ,i satisfies the

system of equations (5.11). Since z̃Γ is the cardinality of the set JΓ and w̃Γ,i is the

cardinality of the set KΓ,i, therefore, z̃Γ’s and w̃Γ,i’s are all non-negative integers. Thus,

the system of equations (5.11) has a non-negative solution.

“if” part: Let a non-negative solution to the system of equations (5.11) be z̃Γ = zΓ,

for all 0 ≤ Γ ≤ 2λ− 1, and w̃Γ,i = wΓ,i, for all Γ ∈M and 0 ≤ i ≤ |YΓ| − 1. Since for all

0 ≤ Γ ≤ 2λ− 1, zΓ ≥ 0, for all Γ ∈M and 0 ≤ i ≤ |YΓ| − 1, wΓ,i ≥ 0, and for all Γ ∈M ,∑|YΓ|−1
i=0 wΓ,i ≤ zΓ, then, we can construct a cube-variable matrix D so that
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1. for all Γ ∈M , the matrix contains zΓ columns of the form ψΓ,

2. for all Γ ∈M , the matrix contains zΓ−
∑|YΓ|−1

i=0 wΓ,i columns of the form ψΓ, and

3. for all Γ ∈ M and all 0 ≤ i ≤ |YΓ| − 1, the matrix contains wΓ,i columns of the

form δΓ,i.

All columns of the matrix D are in the set F . Next, we prove that the matrix D satisfies

the given intersection pattern.

For any L ∈ Z2, suppose L = 2i + 2j , where 0 ≤ i < j ≤ λ− 1. Since∑
Γ∈M,0≤k≤|YΓ|−1:

δΓ,k∈ρL

wΓ,k ≥ 1,

there exists a Γ∗ ∈ M and a 0 ≤ k∗ ≤ |YΓ∗ | − 1, such that δΓ∗,k∗ ∈ ρL and wΓ∗,k∗ ≥ 1.

Therefore, the matrix D contains a column from the set ρL. Based on the definition of

ρL, CL = ci · cj = 0. Thus, for any L ∈ Z2, CL = 0.

Now consider any L ∈ P2. Suppose L = 2i + 2j , where 0 ≤ i < j ≤ λ− 1. We argue

that CL = ci · cj 6= 0. Otherwise, ci · cj = 0. Therefore, there exists a column r in D,

such Dir = 0 and Djr = 1 or Dir = 1 and Djr = 0. Since all the columns of D are in

the set F , thus the column D·r must be in the set Y . However, based on the definition

of representative compatible column pattern set, each element W in the set Y satisfies

that for the L ∈ P2, the situation that Wi = 0 and Wj = 1 or Wi = 1 and Wj = 0

does not happen. Therefore, the column D·r does not belong to the set Y . We get a

contradiction. Thus, for any L ∈ P2, we have CL 6= 0.

Since for any Γ ∈ Z2, CΓ = 0, for any Γ ∈ P2, CΓ 6= 0, and the given intersection

pattern satisfies the conditions of Theorem 20, then, based on Theorem 20, we have

that for any Γ ∈ Z, CΓ = 0 and for any Γ ∈ P , CΓ 6= 0. Thus, for all these Γ ∈ Z,

V (CΓ) = vΓ = 0.

Now consider any L ∈ P . When L = 0, we have that V (C0) = 2n = v0.

For any L ∈ P and L > 0, L can be represented as L =
∑r−1

j=0 2lj , where 1 ≤ r ≤ λ

and 0 ≤ l0 < · · · < lr−1 ≤ λ− 1. Since CL 6= 0, the number of ∗’s in the cube-variable
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row vector CL is the number of columns in D, whose entries on the row l0, l1, . . . , lr−1

are all ∗’s. Note that for any 0 ≤ Γ ≤ 2λ − 1, the column pattern ψΓ has all entries on

the row l0, l1, . . . , lr−1 being ∗’s if and only if Γ � L. Since the root column vector of

δΓ,i is ψΓ, thus for any Γ ∈M and any 0 ≤ i ≤ |YΓ| − 1, the column pattern δΓ,i has all

entries on the row l0, l1, . . . , lr−1 being ∗’s if and only if Γ � L. Therefore, the number

of columns in D, whose entries on the row l0, l1, . . . , lr−1 are all ∗’s, is

∑
Γ∈M :
Γ�L

zΓ +
∑

Γ∈M :
Γ�L

zΓ −
|YΓ|−1∑
i=0

wΓ,i

+
∑

Γ∈M :
Γ�L

|YΓ|−1∑
i=0

wΓ,i

=
∑

0≤Γ≤2λ−1:Γ�L

zΓ = kL.

Therefore, the number of ∗’s in the row vector CL is kL. Since CL 6= 0, by Lemma 5,

V (CL) = 2kL . Thus, for any L ∈ P and L > 0, V (CL) = 2kL = vL.

In summary, for any 0 ≤ Γ ≤ 2λ − 1, V (CΓ) = vΓ. Thus, the matrix D satisfies the

given intersection pattern. �

Comment: The above proof provides a way of synthesizing a cube-variable matrix to

satisfy the given intersection pattern when the three conditions are all satisfied.

Example 20

Given v0 = 64, v1 = 4, v2 = 8, v3 = 0, v4 = 16, v5 = 2, v6 = 2, v7 = 0, v8 = 8, v9 =

1, v10 = 2, v11 = 0, v12 = 0, v13 = 0, v14 = 0, v15 = 0, determine whether there exists a

set of four cubes c0, . . . , c3 on 6 variables x0, . . . , x5 that satisfies the intersection pattern

(v0, . . . , v15).

Solution: First, it is not hard to check that both Statement 1 and Statement 2 in

Theorem 23 hold for the given pattern.
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Now we check whether Statement 3 in Theorem 23 holds. For the given intersection

pattern, we have P = {0, 1, 2, 4, 5, 6, 8, 9, 10}, Z = {3, 7, 11, 12, 13, 14, 15}, and

k0 = 6, k1 = 2, k2 = 3, k4 = 4, k5 = 1,

k6 = 1, k8 = 3, k9 = 0, k10 = 1.

Notice that Z2 = {3, 12}. The corresponding representative compatible column

pattern sets are ρ3 = {(01 ∗ ∗)T } and ρ12 = {(∗ ∗ 01)T }, respectively. Thus, we have

Y =
⋃

Γ∈Z2

ρΓ = {(01 ∗ ∗)T , (∗ ∗ 01)T }.

Since the root column vector of (01 ∗ ∗)T is ψ12 and the root column vector of

(∗ ∗ 01)T is ψ3, we have M = {3, 12}. We can partition the set Y as Y3 = {(∗ ∗ 01)T }

and Y12 = {(01 ∗ ∗)T }.

Based on Definition 22, the element in the set Y3 is defined as δ3,0 = (∗ ∗ 01)T and

the element in the set Y12 is defined as δ12,0 = (01 ∗ ∗)T . Notice that ρ3 = {δ12,0} and

ρ12 = {δ3,0}.
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We can derive the system of equations (5.11) for this example as

∑15
i=0 z̃i = 6

z̃1 + z̃3 + z̃5 + z̃7 + z̃9 + z̃11 + z̃13 + z̃15 = 2

z̃2 + z̃3 + z̃6 + z̃7 + z̃10 + z̃11 + z̃14 + z̃15 = 3

z̃4 + z̃5 + z̃6 + z̃7 + z̃12 + z̃13 + z̃14 + z̃15 = 4

z̃5 + z̃7 + z̃13 + z̃15 = 1

z̃6 + z̃7 + z̃14 + z̃15 = 1∑15
i=8 z̃i = 3

z̃9 + z̃11 + z̃13 + z̃15 = 0

z̃10 + z̃11 + z̃14 + z̃15 = 1

w̃3,0 ≤ z̃3

w̃12,0 ≤ z̃12

w̃3,0 ≥ 1

w̃12,0 ≥ 1

The above system of equations has a non-negative solution

z̃3 = 1, z̃4 = 1, z̃7 = 1, z̃10 = 1, z̃12 = 2,

z̃0 = z̃1 = z̃2 = z̃5 = z̃6 = z̃8 = 0,

z̃9 = z̃11 = z̃13 = z̃14 = z̃15 = 0,

w̃3,0 = 1, w̃12,0 = 1.

Thus, Statement 3 in Theorem 23 also holds. Therefore, there exists a cube-variable

matrix to satisfy the given intersection pattern. Based on the proof of Theorem 23, we

can synthesize a cube-variable matrix that satisfies the given intersection pattern based
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on the above non-negative solution as
∗ 1 ∗ 1 1 0

∗ 1 ∗ ∗ 1 1

0 ∗ ∗ 1 ∗ ∗

1 1 1 ∗ ∗ ∗


and the corresponding cubes are

c0 = x1 ∧ x3 ∧ x4 ∧ x̄5

c1 = x1 ∧ x4 ∧ x5

c2 = x̄0 ∧ x3

c3 = x0 ∧ x1 ∧ x2

It is not hard to verify that cubes c0, . . . , c3 satisfy the given intersection pattern. �

5.5 Implementation

In this section, we will discuss the implementation of the procedure to solve the

λ-cube intersection problem, based on the theory in Section 5.4.

5.5.1 Checking Statement 1 in Theorem 23

We can represent Statement 1 in Theorem 23 in an alternative way, as shown by the

following theorem.

Theorem 24

The following two statements are equivalent:

1. The intersection pattern (v0, . . . , v2λ−1) satisfies that for any 0 ≤ L ≤ 2λ − 1, if

vL > 0, then for any 0 ≤ Γ ≤ 2λ − 1 such that Γ � L, vΓ > 0.

2. The intersection pattern (v0, . . . , v2λ−1) satisfies that for any 1 ≤ k ≤ λ and any

L ∈ Pk, if 0 ≤ Γ ≤ 2λ − 1 satisfies that ||Γ|| = k − 1 and Γ � L, then vΓ > 0. �
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Proof. Statement 1 ⇒ Statement 2: Consider any L ∈ Pk, where 1 ≤ k ≤ λ. By

the definition of Pk, we have vL > 0. Since Statement 1 holds, therefore, for any

0 ≤ Γ ≤ 2λ − 1 such that ||Γ|| = k − 1 and Γ � L, we have vΓ > 0. Thus, Statement 2

holds.

Statement 2 ⇒ Statement 1: When L = 0, we have v0 > 0. Notice that the only

0 ≤ Γ ≤ 2λ− 1 such that Γ � 0 is Γ = 0. Thus, for any 0 ≤ Γ ≤ 2λ− 1 such that Γ � 0,

we have vΓ > 0.

Now consider any 1 ≤ L ≤ 2λ − 1 such that vL > 0. Suppose that ||L|| = r. Then,

1 ≤ r ≤ λ and L ∈ Pr. For any Γ such that 0 ≤ Γ ≤ 2λ − 1 and Γ � L, suppose that

||Γ|| = t. Then, we have 0 ≤ t ≤ r. We can find r− t+ 1 numbers Γt, . . . ,Γr, such that

Γt = Γ, Γr = L, and for any t ≤ k ≤ r − 1, ||Γk|| = k and Γk � Γk+1. Since Statement

2 holds and vΓr = vL > 0, we can see that for any t ≤ k ≤ r− 1, vΓk > 0. In particular,

vΓ = vΓt > 0. Thus, for any 0 ≤ Γ ≤ 2λ − 1 such that Γ � L, we have vΓ > 0. This

concludes the proof. �

Based on Theorem 24, in order to check whether Statement 1 in Theorem 23 holds,

we only need to check whether Statement 2 in Theorem 24 holds. Thus, whether

Statement 1 in Theorem 23 holds can be checked by the procedure shown in Algorithm 5.

5.5.2 Checking Statement 2 in Theorem 23

Whether Statement 2 in Theorem 23 holds can be checked by representing the

given intersection pattern by an undirected graph and listing all maximal cliques of the

undirected graph.

For a given intersection pattern on λ cubes, we can construct an undirected graph

G(N,E) from that pattern, where N is a set of λ nodes n0, . . . , nλ−1 and E is a set of

edges. There is an edge between the node ni and nj (0 ≤ i < j ≤ λ− 1) if and only if

the number (2i + 2j) is in the set P2.
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Algorithm 5 CheckRuleOne(λ, v): the procedure to check whether Statement 1 in
Theorem 23 holds. It returns 1 if the statement holds; otherwise, it returns 0.

1: {Given an integer λ ≥ 1 and a non-negative integer array v = (v0, . . . , v2λ−1).}
2: for i⇐ 0 to λ do
3: Pi ⇐ {Γ|0 ≤ Γ ≤ 2λ − 1, ||Γ|| = i, and vΓ > 0};
4: end for
5: for i⇐ 1 to λ do
6: for all L ∈ Pi do
7: for all 0 ≤ Γ ≤ 2λ − 1 s.t. ||Γ|| = i− 1 and Γ � L do
8: if vΓ = 0 then
9: return 0;

10: end if
11: end for
12: end for
13: end for
14: return 1;

For example, we can represent the intersection pattern shown in Example 17 by the

undirected graph shown in Figure 5.3.

n0

n1

n2

n3

Figure 5.3: An undirected graph constructed from the intersection pattern of Exam-
ple 17.

In graph theory, a clique in an undirected graph G(N,E) is defined as a subset Q

of the node set N , such that for every two nodes in Q, there exists an edge connecting

the two. A maximal clique is a clique that cannot be extended by including one more

adjacent node.

For an intersection pattern, if a set of r (3 ≤ r ≤ λ) numbers 0 ≤ l0 < · · · < lr−1 ≤

λ − 1 satisfies that for any 0 ≤ i < j ≤ r − 1, v
(2li+2lj )

> 0, then, the set of nodes

nl0 , . . . , nlr−1 forms a clique of the undirected graph constructed from the intersection

pattern. Thus, Statement 2 in Theorem 23 can be stated in another way as: For

any clique Q = {nl0 , . . . , nlr−1} of size r in the undirected graph constructed from the
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intersection pattern, where 3 ≤ r ≤ λ and 0 ≤ l0 < · · · < lr−1 ≤ λ− 1, we have vL > 0,

where L =
∑r−1

i=0 2li .

The following theorem shows that if Statement 1 in Theorem 23 holds, then to

check whether Statement 2 holds, we only need to focus on all maximal cliques of the

undirected graph G(N,E).

Theorem 25

If Statement 1 in Theorem 23 holds, then Statement 2 in Theorem 23 holds if and

only if for any maximal clique Q∗ = {nd0 , . . . , ndt−1} of size t in the undirected graph

constructed from the intersection pattern, where 3 ≤ t ≤ λ and 0 ≤ d0 < · · · < dt−1 ≤

λ− 1, we have vL∗ > 0, where L∗ =
∑t−1

i=0 2di . �

Proof. The “only if” part of the above theorem is obvious. We now prove the “if”

part. Consider any clique Q = {nl0 , . . . , nlr−1} in the undirected graph G(N,E). By the

definition of maximal clique, Q is contained in a maximal clique Q∗ = {nd0 , . . . , ndt−1},

where r ≤ t ≤ λ, 0 ≤ d0 < · · · < dt−1 ≤ λ − 1. Since the clique Q is contained in

the clique Q∗, we have Q ⊆ Q∗. Let L =
∑r−1

i=0 2li and L∗ =
∑t−1

i=0 2di . Since Q∗

is a maximal clique, by the assumption, we have vL∗ > 0. Since Q ⊆ Q∗, we have

L � L∗. Since Statement 1 in Theorem 23 holds, we obtain vL > 0. Thus, for any

clique Q = {nl0 , . . . , nlr−1} in the undirected graph G(N,E), we have vL > 0. There-

fore, Statement 2 in Theorem 23 holds. �

Therefore, if Statement 1 in Theorem 23 holds, then whether Statement 2 in Theo-

rem 23 holds can be answered by checking whether all vL’s corresponding to all maximal

cliques in the undirected graph G(N,E) are greater than zero. The problem of listing

all maximal cliques in an undirected graph is a classical problem in graph theory and

can be solved, for example, by the Born-Kerbosch algorithm [40].

Assuming that Statement 1 in Theorem 23 holds, then whether Statement 2 in

Theorem 23 holds can be checked by the procedure shown in Algorithm 6.
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Algorithm 6 CheckRuleTwo(λ, v): the procedure to check whether Statement 2 in
Theorem 23 holds under the assumption that Statement 1 in Theorem 23 holds. It
returns 1 if the statement holds; otherwise, it returns 0.

1: {Given an integer λ ≥ 1 and a non-negative integer array v = (v0, . . . , v2λ−1).}
2: N ⇐ {n0, . . . , nλ−1}; E ⇐ φ;
3: for i⇐ 0 to λ− 1 do
4: for j ⇐ i+ 1 to λ− 1 do
5: if v(2i+2j) > 0 then
6: E ⇐ E ∪ {e(ni, nj)}; {Add an edge between the node ni and the node nj

into the edge set E.}
7: end if
8: end for
9: end for

10: for all maximal clique Q in the graph G(N,E) do
11: L⇐

∑
i:ni∈Q 2i;

12: if vL = 0 then
13: return 0;
14: end if
15: end for
16: return 1;

5.5.3 Checking Statement 3 in Theorem 23

The following theorem shows that to check whether the system of equations (5.11)

has a non-negative solution, we only need to check whether an alternative system of

equations with fewer unknowns has a non-negative solution.

Theorem 26

The system of equations (5.11) has a non-negative integer solution if and only if the

system of equations on unknowns ẑΓ (for all Γ ∈ M) and ŵΓ,i (for all Γ ∈ M and 0 ≤

i ≤ |YΓ| − 1)

∑
Γ∈M,Γ�L

ẑΓ +
∑

Γ∈M,Γ�L

|YΓ|−1∑
i=0

ŵΓ,i = kL, for all L ∈ P

∑
Γ∈M,0≤i≤|YΓ|−1:

δΓ,i∈ρL

ŵΓ,i ≥ 1, for all L ∈ Z2

(5.12)

has a non-negative integer solution. �
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Proof. “if” part: Suppose that a non-negative integer solution to the system of

equations (5.12) is 
ẑΓ = zΓ, for all Γ ∈M,

ŵΓ,i = wΓ,i, for all Γ ∈M, 0 ≤ i ≤ |YΓ| − 1.

We let 
z̃Γ = zΓ, for all Γ ∈M,

z̃Γ =
∑|YΓ|−1

i=0 wΓ,i, for all Γ ∈M,

w̃Γ,i = wΓ,i, for all Γ ∈M, 0 ≤ i ≤ |YΓ| − 1.

Then, it is not hard to see that z̃Γ (for all 0 ≤ Γ ≤ 2λ − 1) and w̃Γ,i (for all Γ ∈

M and 0 ≤ i ≤ |YΓ| − 1) form a non-negative integer solution to the system of equa-

tions (5.11).

“only if” part: Suppose that a non-negative integer solution to the system of

equations (5.11) is 
z̃Γ = zΓ, for all 0 ≤ Γ ≤ 2λ − 1,

w̃Γ,i = wΓ,i, for all Γ ∈M, 0 ≤ i ≤ |YΓ| − 1.
(5.13)

We let 
ẑΓ = zΓ, for all Γ ∈M,

ŵΓ,i = zΓ −
∑|YΓ|−1

i=1 wΓ,i, for all Γ ∈M, i = 0,

ŵΓ,i = wΓ,i, for all Γ ∈M, 1 ≤ i ≤ |YΓ| − 1.

(5.14)

Then, for all Γ ∈M , ẑΓ ≥ 0 and for all Γ ∈M, 1 ≤ i ≤ |YΓ| − 1, ŵΓ,i ≥ 0. Since for

all Γ ∈M ,
∑|YΓ|−1

i=0 wΓ,i ≤ zΓ, then we have that for all Γ ∈M ,

0 ≤ zΓ −
|YΓ|−1∑
i=0

wΓ,i ≤ zΓ −
|YΓ|−1∑
i=1

wΓ,i = ŵΓ,0.
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Based on Equation (5.11), (5.13), and (5.14), we have that for all L ∈ P ,

∑
Γ∈M,Γ�L

ẑΓ +
∑

Γ∈M,Γ�L

|YΓ|−1∑
i=0

ŵΓ,i

=
∑

Γ∈M,Γ�L

zΓ +
∑

Γ∈M,Γ�L
zΓ =

∑
0≤Γ≤2λ−1,Γ�L

z̃Γ = kL.

Since for all Γ ∈M ,
∑|YΓ|−1

i=0 wΓ,i ≤ zΓ, then we have that for all Γ ∈M ,

ŵΓ,0 = zΓ −
|YΓ|−1∑
i=1

wΓ,i ≥ wΓ,0. (5.15)

Combining Equation (5.15) with Equation (5.11), (5.13), and (5.14), we have that for

all Γ ∈M

1 ≤
∑

Γ∈M,0≤i≤|YΓ|−1:
δΓ,i∈ρL

w̃Γ,i =
∑

Γ∈M,0≤i≤|YΓ|−1:
δΓ,i∈ρL

wΓ,i

≤
∑

Γ∈M,0≤i≤|YΓ|−1:
δΓ,i∈ρL

ŵΓ,i.

Then, ẑΓ (for all Γ ∈ M) and ŵΓ,i (for all Γ ∈ M, 1 ≤ i ≤ |YΓ| − 1) form a non-

negative integer solution to the system of equations (5.12). �

Based on Theorem 26, to check whether Statement 3 in Theorem 23 holds, we only

need to check whether the system of equations (5.12) has a non-negative solution. Note

that the system of equations (5.12) has |M | fewer unknowns and |M | fewer inequalities

than the original system of equations (5.11). Thus, a certain amount of computation

will be saved.

5.5.4 The Procedure to Solve the λ-Cube Intersection Problem

Based on the above discussion, we give the procedure to solve the λ-cube intersec-

tion problem in Algorithm 7. In the procedure, the function CheckRuleOne(λ, v) and
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the function CheckRuleTwo(λ, v) are shown in Algorithm 5 and 6, respectively. The

function RCCPS(Γ, λ, P2) returns the representative compatible column pattern set for

a Γ ∈ Z2. The function

SetEqn(P,Z2,M,M, {kL|L ∈ P}, {ρL|L ∈ Z2}, {YL|L ∈M})

returns the matrices Aze, Awe, Aw and the column vectors be and b in the matrix repre-

sentation of the system of equations (5.12), which is
Aze~z +Awe ~w = be,

Aw ~w ≥ b,
(5.16)

where ~z is a column vector of unknowns ẑΓ, for all Γ ∈M , and ~w is a column vector of un-

knowns ŵΓ,i, for all Γ ∈M and 0 ≤ i ≤ |YΓ|−1. The function NonNegSln(Aze, Awe, be, Aw, b)

finds a non-negative integer solution to the system of equations (5.16). If the system of

equations (5.16) has a non-negative integer solution, then the function returns one such

solution; otherwise, it returns φ. Given a non-negative solution (~z, ~w) to the system of

equations (5.16), the function SynCubes(~z, ~w, λ) synthesizes a set of λ cubes from that

solution.

5.6 Experimental Results

We tested our algorithm on two-level logic benchmarks that accompany the two-

level logic minimizer Espresso [41]. For each benchmark, we ignored the output part of

the cubes and just set the number of outputs to be one. We optimized each modified

benchmark by Espresso and then call a program to generate an intersection pattern file

of that benchmark. This intersection pattern file serves as the input to our program.

We performed two sets of experiments to test our algorithm. In the first set of

experiments, we tested our algorithm on solving special cases. The main goal was to

study the runtime of our algorithm. The benchmarks we tested are listed in Table 5.2.
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Algorithm 7 CubePattern(λ, v): the procedure to check whether there exists a set of λ
cubes to satisfy the given intersection pattern v = (v0, . . . , v2λ−1). If the answer is yes,
the procedure returns a set of cubes that satisfies the intersection pattern; otherwise, it
returns φ.

1: {Given an integer λ ≥ 1 and a non-negative integer array v = (v0, . . . , v2λ−1), where
each entry is from the set {0, 20, 21, . . . 2n}.}

2: P ⇐ φ; Z ⇐ φ;
3: for i⇐ 0 to 2λ − 1 do
4: if vΓ > 0 then
5: P ⇐ P ∪ {Γ};
6: kΓ ⇐ log2 vΓ;
7: else {vΓ = 0}
8: Z ⇐ Z ∪ {Γ};
9: end if

10: end for
11: if CheckRuleOne(λ, v) = 0 then
12: return φ;
13: end if
14: if CheckRuleTwo(λ, v) = 0 then
15: return φ;
16: end if
17: P2 ⇐ {Γ|0 ≤ Γ ≤ 2λ − 1, ||Γ|| = 2, and vΓ > 0};
18: Z2 ⇐ {Γ|0 ≤ Γ ≤ 2λ − 1, ||Γ|| = 2, and vΓ = 0};
19: for all Γ ∈ Z2 do
20: ρΓ = RCCPS(Γ, λ, P2);
21: end for
22: Y ⇐

⋃
Γ∈Z2

ρΓ;
23: M ⇐ {Γ|0 ≤ Γ ≤ 2λ − 1, s.t. ∃W ∈ Y s.t. t(W ) = ψΓ};
24: M ⇐ {Γ|0 ≤ Γ ≤ 2λ − 1,Γ 6∈M};
25: for all Γ ∈M do
26: YΓ ⇐ {W |W ∈ Y and t(W ) = ψΓ};
27: end for
28: (Aze, Awe, be, Aw, b) ⇐ SetEqn(P,Z2,M,M, {kL|L ∈ P}, {ρL|L ∈ Z2}, {YL|L ∈

M});
29: (~z, ~w)⇐ NonNegSln(Aze, Awe, be, Aw, b);
30: if (~z, ~w) = φ then
31: return φ;
32: end if
33: return SynCubes(~z, ~w, λ);
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Since just a few benchmarks generated a special intersection pattern, we manually

created some test cases. For example, the benchmark mark1 11 was created from the

original benchmark mark1 by deleting five cubes. Notice that by deleting some cubes,

the new benchmark still has its intersection of all cubes nonempty. Not surprisingly, the

runtime increased exponentially with the number of cubes λ. This is because the number

of unknowns increases exponentially with λ. However, since the size of the inputs to

our program is O(2λ), which is proportional to the number of intersections, the runtime

complexity compared to the size of the inputs is linear. Further, for the benchmark

shift, although the number of unknowns is more than 2 million, our algorithm is able

to obtain the solution in about 70 seconds.

Table 5.2: Number of unknowns and runtime for special case problems.

circuit #cubes #inputs #unknowns time (s)
newtpla2 9 10 512 0

in3 10 35 1024 0
mark1 11 11 20 2048 0.01
mark1 12 12 20 4096 0.04
mark1 13 13 20 8192 0.08
mark1 14 14 20 16384 0.2
mark1 15 15 20 32768 0.48
mark1 16 20 65536 1.18

shift 17 17 19 131072 1.73
shift 18 18 19 262144 3.19
shift 19 19 19 524288 7.84
shift 20 20 19 1048576 24.97
shift 21 19 2097152 71.33

In the second set of experiments, we tested our algorithm to solve general cases. We

developed a program that takes an intersection pattern file and writes out the system

of equations (5.12). This system of equations can be fed into specialized programs to

solve for non-negative solution. We list the numbers of unknowns and the numbers of

equations on some benchmarks in Table 5.3. We compared the number of unknowns
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obtained by our method to the number of unknowns of a naive method in which all

3λ combinations of column patterns are taken as unknowns to set up equations. The

number of unknowns generated by our method and the number of unknowns generated

by the naive method are listed in the fourth column and the fifth column of Table 5.3,

respectively. The ratio of the number of unknowns generated by our method to that

generated by the naive method is listed in the sixth column. We can see that our

algorithm greatly reduced the number of unknowns: for most of the benchmarks, our

method can reduce more than 95% of unknowns. Thus, we believe that our proposed

algorithm will greatly reduce the runtime to solve the general case problem compared

to the naive method.

Table 5.3: Number of unknowns and number of equations for general case problems.

#unknowns #equations
circuit #cubes #inputs our naive ratio

(a) (b) (a/b)
luc 6 8 66 729 0.091 32
br2 6 12 228 729 0.31 22
tms 8 8 262 6561 0.040 69
prom2 9 9 512 19683 0.026 265
br1 10 12 8108 59049 0.137 58
vg2 10 25 1294 59049 0.022 71
exps 12 8 4130 531441 0.008 399
alu1 12 12 4096 531441 0.008 1300
exp 14 8 69470 4782969 0.015 122

newtpla 14 15 127908 4782969 0.027 117



Chapter 6

Conclusion and Future Directions

The computation that we are advocating in this dissertation has a pseudo analog

character, reminiscent of computations performed by physical systems such as electron-

ics on continuously variable signals such as voltage. In our case, the variable signal is

the probability of obtaining a one in a stochastic yet digital bit stream. Indeed, our sys-

tem is built from ordinary, cheap digital electronics such as CMOS. Digital constructs

in CMOS operate on physical signals such as voltage, of course. However, they are

designed with the premise that these signals can always be unequivocally interpreted as

zero or as one.

This is certainly counterintuitive: why impose an analog view on digital values? As

we have demonstrated in this dissertation, it might often be advantageous to do so, both

from the standpoint of the hardware resources required as well as the error tolerance of

the computation. Many of the functions that we seek to implement for computational

systems such as signal processing are arithmetic functions, consisting of operations like

addition and multiplication. Complex functions, such as exponentials and trigonomet-

ric functions, are generally computed through polynomial approximations, so through

multiplications and additions. As we have argued, these operations are very natural

and efficient when performed on stochastic bit streams.

141
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We are the first to tackle the problem of synthesizing arbitrary arithmetic functions

through logical computation on stochastic bit streams. The synthesis results for our

stochastic implementations of a variety of functions are convincing. The hardware cost

is much less than that of conventional implementations with adders and multipliers.

Since stochastic bit streams are uniform, with no bit privileged above any other, the

computation is highly error tolerant. As higher and higher rates of bit flips occur, the

accuracy degrades gracefully.

Indeed, computation on stochastic bit streams could offer tunable precision: as the

length of the stochastic bit stream increases, the precision of the value represented by

it also increases. Thus, without hardware redesign, we have the flexibility to tradeoff

precision and computation time. In contrast, with a conventional binary-radix im-

plementation, when a higher precision is required, the underlying hardware has to be

redesigned.

Finally, we would like to point out several future research directions related to logical

computation on stochastic bit streams.

One exciting future direction is to study the relationship between coding and com-

putation. Traditional research in coding theory focuses on the relationship between

information coding and the transmission of information. Such research falls into one

of two categories: data compression coding, which studies how to compress the data

for efficient transmission, and error correction coding, which studies how to encode the

data so that it can be transmitted more reliably. Our research in logical computation

on stochastic bit streams shows that the stochastic encoding has advantages over the

conventional binary radix encoding in terms of hardware cost and fault tolerance, but

has disadvantages in terms of data length and computation time. This suggests that

there is a strong connection between data coding and computation with the data. Given

that the binary radix encoding and the stochastic encoding are at the extreme ends of

the spectrum of data encoding, we believe that an encoding that lies in the middle

of the spectrum may take both the advantages of the binary radix encoding and the
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stochastic encoding. A promising approach is to represent a number as a concatenation

of short stochastic bit streams, each stochastically encoding a value and associated with

a different weight.

We have demonstrated that logical computation on stochastic bit streams is tolerant

to bit flip errors on the stream. Indeed, the effect of bit flip error on the stochastic bit

stream is predictable. To illustrate this, consider a stochastic bit stream X that encodes

a value p. Suppose that bit flip error occurs at a probability of ε and it corrupts the orig-

inal stochastic bit stream X into another stochastic bit stream X ′. As shown by Equa-

tion (1.1), the value p′ represented by the stream X ′ is p′ = P (X ′ = 1) = ε+ (1− 2ε)p.

Thus, if we know the bit flip rate ε a priori, we could extract the correct value p from

the corrupted bit stream. This is a significant advantage of the stochastic representa-

tion over the binary radix representation. For binary radix, even if we know the bit flip

rate a priori, we still cannot infer the correct value: we need to know exactly which

bits of the binary number are flipped to reconstruct the correct value. An interesting

future direction is to design an error correcting unit in the probabilistic domain to fully

exploit such an advantage of the stochastic representation. The error correcting unit

will further enhance the fault tolerance of logical computation on stochastic bit streams.

Logical computation on stochastic bit streams is also a promising paradigm for

designing circuits with emerging nanoscale devices. As the semiconductor industry

contemplates the end of Moore’s Law, there has been a groundswell of interest in tech-

nologies that offer a path to scaling beyond the limits of the current CMOS technol-

ogy. Nanoscale technologies such as carbon nanotubes, nanowire arrays, and molecular

switches present both challenges and opportunities for digital circuit design. On the

one hand, such technologies promise unprecedented densities, which will translate into

vast numbers of switches, logic gates, and bits. On the other hand, both the scale and

the assembly techniques constrain the circuits, particularly if they are self-assembled.

Most of the technologies are characterized by very high defect rates, as well as inherent

randomness in their wiring [42].



144

Most research in implementing circuits with nanoscale technologies focuses on how

to adapt the technology to the well-established paradigm used by CMOS circuit. At

the device and the circuit level, much effort is expended on eliminating the random-

ness and defects of the basic constructs so that they behave much like reliable CMOS

transistors [43]. At the logical and the architectural level, fault-tolerant techniques are

applied to ensure the correct behavior of the circuit [44].

However, in our view, since such emerging nanotechnologies differ from today’s

CMOS technology in many fundamental aspects, maintaining the computational paradigm

used by CMOS technology for nanoscale computation is not wise. Instead, we should ex-

plore new paradigms that can exploit the inherent randomness of the nanoscale devices.

Logical computation on stochastic bit streams is a potential good choice.



Appendix A

A Proof of Theorem 1

For convenience, given a Bernstein polynomial g(t) =
∑n

k=0 βk,nbk,n(t), we can also

express it as

g(t) =
n∑
k=0

ck,nt
k(1− t)n−k, (A.1)

where

ck,n =
(
n

k

)
βk,n, (A.2)

for k = 0, 1, . . . , n. Substituting Equation (A.2) into Equation (2.12), we have

ck,m+1 =


c0,m, for k = 0

ck−1,m + ck,m, for 1 ≤ k ≤ m

cm,m, for k = m+ 1.

(A.3)

Suppose that the polynomial g is of degree n. Applying Equation (A.3) recursively,

we can express ck,m as a linear combination of c0,n, c1,n, . . . , cn,n.

Lemma 11

Let g be a polynomial of degree n. For any m ≥ n, suppose that the Bernstein polyno-

mial of degree m of g is g(t) =
m∑
k=0

ck,mt
k(1− t)m−k. Let ck,m = 0 for all k < 0 and all

145
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k > m. Then for all k = 0, 1, . . . ,m, we have

ck,m =
m−n∑
i=0

(
m− n
i

)
ck−m+n+i,n. � (A.4)

Proof. We prove the lemma by induction on m− n.

Base case: For m− n = 0, the right-hand side of Equation (A.4) reduces to
(

0
0

)
ck,n =

ck,m, so the equation holds.

Inductive step: Suppose that Equation (A.4) holds for some m ≥ n and all k =

0, 1, . . . ,m. Consider m+ 1. Since we assume that c−1,m = cm+1,m = 0, Equation (A.3)

can be written as

ck,m+1 = ck−1,m + ck,m, (A.5)

for all k = 0, . . . ,m+ 1. With our convention that ci,n = 0 for all i < 0 and i > n, it is

easily seen that

c−1,m = 0 =
m−n∑
i=0

(
m− n
i

)
c−1−m+n+i,n,

cm+1,m = 0 =
m−n∑
i=0

(
m− n
i

)
cm+1−m+n+i,n.

Together with the induction hypothesis, we conclude that for all k = −1, 0, . . . ,m,m+1

ck,m =
m−n∑
i=0

(
m− n
i

)
ck−m+n+i,n. (A.6)

Based on Equations (A.5) and (A.6), for all k = 0, 1, . . . ,m+ 1, we have

ck,m+1 =
m−n∑
i=0

(
m− n
i

)
ck−1−m+n+i,n +

m−n∑
j=0

(
m− n
j

)
ck−m+n+j,n.
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In the first sum, we change the summation index to j = i− 1. We obtain

ck,m+1 =
m−n−1∑
j=−1

(
m− n
j + 1

)
ck−m+n+j,n +

m−n∑
j=0

(
m− n
j

)
ck−m+n+j,n

=
(
m− n

0

)
ck−m+n−1,n +

m−n−1∑
j=0

[(
m− n
j + 1

)
+
(
m− n
j

)]
ck−m+n+j,n +

(
m− n
m− n

)
ck,n.

Applying the basic formula
(
r

q

)
=
(
r − 1
q − 1

)
+
(
r − 1
q

)
, we obtain

ck,m+1 = ck−m+n−1,n +
m−n−1∑
j=0

(
m+ 1− n
j + 1

)
ck−m+n+j,n + ck,n

=
m+1−n∑
i=0

(
m+ 1− n

i

)
ck−m−1+n+i,n.

Thus Equation (A.4) holds for m+ 1. By induction, it holds for all m ≥ k. �

Remark: Equation (A.4) can be formulated as

ck,m =
min{k,n}∑

i=max{0,k−m+n}

(
m− n
k − i

)
ci,n, (A.7)

for all m ≥ n and k = 0, 1, . . . ,m. Indeed, in Equation (A.4), first use the basic formula(
r

q

)
=
(

r

r − q

)
and then change the summation index to j = k −m+ n+ i to obtain

ck,m =
m−n∑
i=0

(
m− n

m− n− i

)
ck−m+n+i,n =

k∑
j=k−m+n

(
m− n
k − j

)
cj,n.

Note that cj,n 6= 0 implies 0 ≤ j ≤ n. This yields Equation (A.7). �

Lemma 12

Let n be a positive integer. For all integer m, k and i such that

m > n, 0 ≤ k ≤ m, max{0, k −m+ n} ≤ i ≤ min{k, n}, (A.8)

we have ∣∣∣∣∣
(
k

m

)i(
1− k

m

)n−i
−
(
m−n
k−i
)(

m
k

) ∣∣∣∣∣ ≤ n2

m
. � (A.9)
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Proof. For simplicity, we define δ =
(
k

m

)i(
1− k

m

)n−i
−
(
m−n
k−i
)(

m
k

) . Now

(
m−n
k−i
)(

m
k

) =
(m− n)!

(k − i)!(m− n− k + i)!
· k!(m− k)!

m!

=
k(k − 1) · · · (k − i+ 1)(m− k)(m− k − 1) · · · (m− n− k + i+ 1)

m(m− 1) · · · (m− n+ 1)

=
i−1∏
j=0

k − j
m− j

·
n−i−1∏
j=0

m− k − j
m− i− j

=
i−1∏
j=0

(
1− m− k

m− j

)
·
n−i−1∏
j=0

(
1− k − i

m− i− j

)
.

(A.10)

We obtain an upper bound for

(
m−n
k−i
)(

m
k

) by replacing j in Equation (A.10) with its least

value, 0:(
m−n
k−i
)(

m
k

) ≤ i−1∏
j=0

(
1− m− k

m

)
·
n−i−1∏
j=0

(
1− k − i

m− i

)
=
(
k

m

)i(m− k
m− i

)n−i
.

We need the following simple inequality: for real numbers 0 ≤ t ≤ y ≤ 1 and a non-

negative integer l,

yl − tl = (y − t)
l−1∑
j=0

yjtl−1−j ≤ (y − t)l. (A.11)

From Equation (A.8), we obtain 0 ≤ i ≤ min{k, n} ≤ k ≤ m and so we can use

Equation (A.11) for

0 ≤ t =
m− k
m

≤ m− k
m− i

= y ≤ 1, l = n− i ≥ 0.

We obtain

δ =
(
k

m

)i(
1− k

m

)n−i
−
(
m−n
k−i
)(

m
k

) ≥ ( k
m

)i((m− k
m

)n−i
−
(
m− k
m− i

)n−i)

= −
(
k

m

)i((m− k
m− i

)n−i
−
(
m− k
m

)n−i)

≥ −
(
k

m

)i(m− k
m− i

− m− k
m

)
(n− i) = −

(
k

m

)i (m− k)i(n− i)
(m− i)m

.

Since 0 ≤ k

m
≤ 1, 0 ≤ m− k

m− i
≤ 1, and 0 ≤ i ≤ n, we obtain

−
(
k

m

)i (m− k)i(n− i)
(m− i)m

≥ − i(n− i)
m

> −n
2

m
.
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Therefore,

δ =
(
k

m

)i(
1− k

m

)n−i
−
(
m−n
k−i
)(

m
k

) > −n
2

m
. (A.12)

Similarly, we obtain a lower bound for

(
m−n
k−i
)(

m
k

) by replacing the index j in Equation (A.10)

with i in the first product and with n− i in the second product, obtaining(
m−n
k−i
)(

m
k

) =
i−1∏
j=0

(
1− m− k

m− j

)
·
n−i−1∏
j=0

(
1− k − i

m− i− j

)

≥
i−1∏
j=0

(
1− m− k

m− i

)
·
n−i−1∏
j=0

(
1− k − i

m− n

)

=
(
k − i
m− i

)i(m− n− k + i

m− n

)n−i
≥
(
k − i
m− i

)i(m− n− k + i

m− n+ i

)n−i
.

Thus, proceeding as above, we have

δ =
(
k

m

)i(
1− k

m

)n−i
−
(
m−n
k−i
)(

m
k

)
≤
(
k

m

)i(m− k
m

)n−i
−
(
k − i
m− i

)i(m− n− k + i

m− n+ i

)n−i
=

[(
k

m

)i
−
(
k − i
m− i

)i](m− k
m

)n−i
+

[(
m− k
m

)n−i
−
(
m− n− k + i

m− n+ i

)n−i]( k − i
m− i

)i
.

Due to Equation (A.8), we have

0 ≤ k − i
m− i

≤ k

m
≤ 1, 0 ≤ m− n− k + i

m− n+ i
≤ m− k

m
≤ 1,

and so we obtain

δ ≤
(
k

m

)i
−
(
k − i
m− i

)i
+
(
m− k
m

)n−i
−
(
m− n− k + i

m− n+ i

)n−i
. (A.13)

Applying Equation (A.11) twice to the right-hand side of Equation (A.13), we obtain

δ ≤ i
(
k

m
− k − i
m− i

)
+ (n− i)

(
m− k
m

− m− n− k + i

m− n+ i

)
=
i2

m
· m− k
m− i

+
(n− i)2

m
· k

m− n+ i
.
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From Equation (A.8), we have

0 ≤ m− k
m− i

≤ 1, 0 ≤ k

m− n+ i
≤ 1.

Therefore,

δ =
(
k

m

)i(
1− k

m

)n−i
−
(
m−n
k−i
)(

m
k

) ≤ i2 + (n− i)2

m
≤ ni+ n(n− i)

m
=
n2

m
. (A.14)

Equations (A.12) and (A.14) together yield Equation (A.9). �

Now we give a proof of Theorem 1.

Theorem 1

Let g be a polynomial of degree n ≥ 0. For any ε > 0, there exists a positive integer

M ≥ n such that for all integer m ≥M and k = 0, 1, . . . ,m, we have∣∣∣∣βk,m − g( km
)∣∣∣∣ < ε,

where β0,m, β1,m, . . . , βm,m satisfy that g(t) =
m∑
k=0

βk,mbk,m(t). �

Proof. For n = 0, g is a constant polynomial. Suppose that g(t) = y, where y is

a constant value. We select M = 1. Then, for all integers m ≥ M and all integers

k = 0, 1, . . . ,m, we have βk,m = y = g

(
k

m

)
. Thus, the theorem holds.

For n > 0, we select M such that M > max

{
n2

ε

n∑
i=0

|ci,n|, 2n

}
, where the real

numbers c0,n, c1,n, . . . , cn,n satisfy

g(t) =
n∑
i=0

ci,nt
i(1− t)n−i. (A.15)

Now consider any m ≥M . Since

2n ≤ max

{
n2

ε

n∑
i=0

|ci,n|, 2n

}
< M ≤ m,

we have m− n > n. Consider the following three cases for k.
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1. The case where n ≤ k ≤ m− n. Here max{0, k −m+ n} = 0 and min{k, n} = n.

Thus, the summation indices in Equation (A.7) range from 0 to n. Therefore,

βk,m =
ck,m(
m
k

) =
n∑
i=0

(
m−n
k−i
)(

m
k

) ci,n. (A.16)

Substituting t with k
m in Equation (A.15), we have

g

(
k

m

)
=

n∑
i=0

ci,n

(
k

m

)i(
1− k

m

)n−i
. (A.17)

By Lemma 12, since 0 < n < m and 0 ≤ k ≤ m, Equation (A.9) holds for all

0 = max{0, k −m + n} ≤ i ≤ min{k, n} = n. Thus, by Equations (A.9), (A.16),

(A.17) and the well-known inequality |
∑
ti| ≤

∑
|ti|, we have∣∣∣∣βk,m − g( km

)∣∣∣∣ =

∣∣∣∣∣
n∑
i=0

[(
m−n
k−i
)(

m
k

) − ( k
m

)i(
1− k

m

)n−i]
ci,n

∣∣∣∣∣
≤

n∑
i=0

∣∣∣∣∣
(
m−n
k−i
)(

m
k

) − ( k
m

)i(
1− k

m

)n−i∣∣∣∣∣ |ci,n| ≤ n2

m

n∑
i=0

|ci,n|.

Since
n2

ε

n∑
i=0

|ci,n| < M ≤ m, we have

n2

m

n∑
i=0

|ci,n| < ε. (A.18)

Therefore, for all n ≤ k ≤ m− n, we have
∣∣∣∣βk,m − g( km

)∣∣∣∣ < ε.

2. The case where 0 ≤ k < n. Since m > 2n, we have k − m + n < k − n < 0.

Thus, max{0, k −m + n} = 0 and min{k, n} = k. Thus, the summation indices

in Equation (A.7) range from 0 to k. Therefore,

βk,m =
ck,m(
m
k

) =
k∑
i=0

(
m−n
k−i
)(

m
k

) ci,n. (A.19)
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When k + 1 ≤ i ≤ n, we have that 1 ≤ k + 1 ≤ i and so∣∣∣∣∣
(
k

m

)i(
1− k

m

)n−i∣∣∣∣∣ =
(
k

m

) ∣∣∣∣∣
(
k

m

)i−1(
1− k

m

)n−i∣∣∣∣∣ ≤ k

m
<

n

m
≤ n2

m
. (A.20)

By Lemma 12, since 0 < n < m and 0 ≤ k ≤ m, Equation (A.9) holds for all

0 = max{0, k −m + n} ≤ i ≤ min{k, n} = k. Thus, by Equations (A.9), (A.17),

(A.18), (A.19), (A.20) and the inequality |
∑
ti| ≤

∑
|ti|, we have∣∣∣∣βk,m − g( km

)∣∣∣∣ =

∣∣∣∣∣
k∑
i=0

(
m−n
k−i
)(

m
k

) ci,n −
n∑
i=0

(
k

m

)i(
1− k

m

)n−i
ci,n

∣∣∣∣∣
=

∣∣∣∣∣
k∑
i=0

[(
m−n
k−i
)(

m
k

) − ( k
m

)i(
1− k

m

)n−i]
ci,n −

n∑
i=k+1

(
k

m

)i(
1− k

m

)n−i
ci,n

∣∣∣∣∣
≤

k∑
i=0

∣∣∣∣∣
(
m−n
k−i
)(

m
k

) − ( k
m

)i(
1− k

m

)n−i∣∣∣∣∣ |ci,n|+
n∑

i=k+1

∣∣∣∣∣
(
k

m

)i(
1− k

m

)n−i∣∣∣∣∣ |ci,n|
≤ n2

m

n∑
i=0

|ci,n| < ε.

3. The case where m− n < k ≤ m. Since m > 2n, we have n < m− n < k. Thus,

max{0, k−m+ n} = k−m+ n and min{k, n} = n. Now, the summation indices

in Equation (A.7) range from k −m+ n to n. Therefore,

βk,m =
ck,m(
m
k

) =
n∑

i=k−m+n

(
m−n
k−i
)(

m
k

) ci,n. (A.21)

When 0 ≤ i ≤ k −m+ n− 1, we have that 1 ≤ m+ 1− k ≤ n− i. Thus,∣∣∣∣∣
(
k

m

)i(
1− k

m

)n−i∣∣∣∣∣ =
(

1− k

m

) ∣∣∣∣∣
(
k

m

)i(
1− k

m

)n−i−1
∣∣∣∣∣

≤ m− k
m

<
n

m
≤ n2

m
.

(A.22)

By Lemma 12, since 0 < n < m and 0 ≤ k ≤ m, Equation (A.9) holds for all

k −m+ n = max{0, k −m+ n} ≤ i ≤ min{k, n} = n. Thus, by Equations (A.9),
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(A.17), (A.18), (A.21), (A.22) and the inequality |
∑
ti| ≤

∑
|ti|, we have∣∣∣∣βk,m − g( km

)∣∣∣∣ =

∣∣∣∣∣
n∑

i=k−m+n

(
m−n
k−i
)(

m
k

) ci,n −
n∑
i=0

(
k

m

)i(
1− k

m

)n−i
ci,n

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=k−m+n

[(
m−n
k−i
)(

m
k

) − ( k
m

)i(
1− k

m

)n−i]
ci,n −

k−m+n−1∑
i=0

(
k

m

)i(
1− k

m

)n−i
ci,n

∣∣∣∣∣
≤

n∑
i=k−m+n

∣∣∣∣∣
(
m−n
k−i
)(

m
k

) − ( k
m

)i(
1− k

m

)n−i∣∣∣∣∣ |ci,n|+
k−m+n−1∑

i=0

∣∣∣∣∣
(
k

m

)i(
1− k

m

)n−i∣∣∣∣∣ |ci,n|
≤ n2

m

n∑
i=0

|ci,n| < ε.

In conclusion, if m ≥M , then for all k = 0, 1, . . . ,m, we have∣∣∣∣βk,m − g( km
)∣∣∣∣ < ε. �



Appendix B

A Proof of Theorem 2

In this section, we demonstrate that the sets U and V defined in Definitions 2 and 3

are one and the same. We demonstrate that U ⊆ V and V ⊆ U separately. First, we

prove the former – the easier one. Then we use Theorem 1 to prove the latter.

Theorem 27

U ⊆ V. �

Proof. Let n ≥ 1 and βk,n = 0, for all 0 ≤ k ≤ n. Then the polynomial

p(t) =
n∑
k=0

βk,nbk,n(t) = 0.

Let n ≥ 1 and βk,n = 1, for all 0 ≤ k ≤ n. Then, by Equation (2.4), the polynomial

p(t) =
n∑
k=0

βk,nbk,n(t) = 1.

Thus 0 ∈ U and 1 ∈ U . From the definition of V , 0 ∈ V and 1 ∈ V .

Now consider any polynomial p ∈ U such that p 6≡ 0 and p 6≡ 1. There exist n ≥ 1

and 0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1 such that

p(t) =
n∑
k=0

βk,nbk,n(t).

154
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From Equations (2.3), (2.4) and the fact that 0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1, for all t in

[0, 1], we have

0 ≤ p(t) =
n∑
k=0

βk,nbk,n(t) ≤
n∑
k=0

bk,n(t) = 1.

We further claim that for all t in (0, 1), we must have 0 < p(t) < 1. By contraposi-

tion, we assume that there exists a 0 < t0 < 1, such that p(t0) ≤ 0 or p(t0) ≥ 1. Since

for 0 < t0 < 1, we have 0 ≤ p(t0) ≤ 1, thus p(t0) = 0 or 1.

We first consider the case that p(t0) = 0. Since 0 < t0 < 1, it is not hard to see that

for all k = 0, 1, . . . , n, bk,n(t0) > 0. Thus, p(t0) = 0 implies that for all k = 0, 1, . . . , n,

βk,n = 0. In this case, for any real number t, p(t) =
∑n

k=0 βk,nbk,n(t) = 0, which

contradicts the assumption that p(t) 6≡ 0.

Similarly, in the case that p(t0) = 1, we can show that p(t) ≡ 1, which contradicts

the assumption that p(t) 6≡ 1. In both cases, we get a contradiction; this proves the

claim that for all t in (0, 1), 0 < p(t) < 1.

Therefore, for any polynomial p ∈ U such that p 6≡ 0 and p 6≡ 1, we have p ∈ V .

Since we showed at the outset that 0 ∈ U , 1 ∈ U , 0 ∈ V and 1 ∈ V , thus, for any

polynomial p ∈ U , we have p ∈ V . Therefore, U ⊆ V . �

Next we prove the claim that V ⊆ U . We will first show that each of four possible

different categories of polynomials in the set V are in the set U . The different categories

are tackled in Theorems 28 and 29 and Corollaries 4 and 5.

Theorem 28

Let g be a polynomial of degree n mapping the open interval (0, 1) into (0, 1) with

0 ≤ g(0), g(1) < 1. Then g ∈ U . �

Proof. Since g is continuous on the closed interval [0, 1], it attains its maximum value

Mg on [0, 1]. Since g(t) < 1, for all t ∈ [0, 1], we have Mg < 1.

Let ε1 = 1 −Mg > 0. By Theorem 1, there exists a positive integer M1 ≥ n such

that for all integers m ≥M1 and k = 0, 1, . . . ,m, we have
∣∣∣∣βk,m − g( km

)∣∣∣∣ < ε1, where
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β0,m, β1,m, . . . , βm,m satisfy that g(t) =
m∑
k=0

βk,mbk,m(t). Thus, for all m ≥ M1 and all

k = 0, 1, . . . ,m,

βk,m < g

(
k

m

)
+ ε1 ≤Mg + 1−Mg = 1. (B.1)

Denote by r the multiplicity of 0 as a root of g(t) (where r = 0 if g(0) 6= 0) and by

s the multiplicity of 1 as a root of g(t) (where s = 0 if g(1) 6= 0). We can factorize g(t)

as

g(t) = tr(1− t)sh(t), (B.2)

where h(t) is a polynomial, satisfying that h(0) 6= 0 and h(1) 6= 0.

We show that h(0) > 0. By the way of contraposition, suppose that h(0) ≤ 0. Since

h(0) 6= 0, we have h(0) < 0. By the continuity of the polynomial h(t), there exists some

0 < t∗ < 1, such that h(t∗) < 0. Thus, g(t∗) = t∗r(1− t∗)sh(t∗) < 0. However, g(t) > 0,

for all t ∈ (0, 1). Therefore, h(0) > 0. Similarly, we have h(1) > 0.

Since g(t) > 0 for all t in (0, 1), we have h(t) =
g(t)

tr(1− t)s
> 0 for all t in (0, 1). In

view of the fact that h(0) > 0 and h(1) > 0, we have h(t) > 0, for all t in [0, 1]. Since

h(t) is continuous on the closed interval [0, 1], it attains its minimum value mh on [0, 1].

Clearly, mh > 0.

Let ε2 = mh > 0. By Theorem 1, there exists a positive integer M2 ≥ n−r−s, such

that for all integers d ≥ M2 and k = 0, 1, . . . , d, we have
∣∣∣∣γk,d − h(kd

)∣∣∣∣ < ε2, where

γ0,d, γ1,d, . . . , γd,d satisfy that

h(t) =
d∑

k=0

γk,dbk,d(t). (B.3)

Thus, for all d ≥M2 and all k = 0, 1, . . . , d,

γk,d > h

(
k

d

)
− ε2 ≥ mh −mh = 0.
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Combining Equations (B.2) and(B.3), we have

g(t) = tr(1− t)sh(t) = tr(1− t)s
d∑

k=0

γk,dbk,d(t) = tr(1− t)s
d∑

k=0

γk,d

(
d

k

)
tk(1− t)d−k

=
d∑

k=0

γk,d
(
d
k

)(
d+r+s
k+r

)(d+ r + s

k + r

)
tk+r(1− t)d+s−k =

d+r∑
k=r

γk−r,d
(
d
k−r
)(

d+r+s
k

) bk,d+r+s(t)

=
d+r+s∑
k=0

βk,d+r+sbk,d+r+s(t),

where βk,d+r+s are the coefficients of the Bernstein polynomial of degree d+ r + s of g

and

βk,d+r+s =


0, for 0 ≤ k < r and d+ r < k ≤ d+ r + s

γk−r,d( d
k−r)

(d+r+sk ) > 0, for r ≤ k ≤ d+ r.

Thus, when m = d+ r + s ≥M2 + r + s, we have for all k = 0, 1, . . . ,m,

βk,m ≥ 0. (B.4)

According to Equations (B.1) and (B.4), if we select an m0 ≥ max{M1,M2 + r+ s},

then g(t) can be expressed as a Bernstein polynomial of degree m0:

g(t) =
m0∑
k=0

βk,m0bk,m0(t),

with 0 ≤ βk,m0 ≤ 1, for all k = 0, 1, . . . ,m0. Therefore, g ∈ U . �

Theorem 29

Let g be a polynomial of degree n mapping the open interval (0, 1) into (0, 1) with

g(0) = 0 and g(1) = 1. Then g ∈ U . �

Proof. Denote by r the multiplicity of 0 as a root of g(t). We can factorize g(t) as

g(t) = trh(t), (B.5)
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where h(t) is a polynomial satisfying h(0) 6= 0. By a similar reasoning as in the proof

of Theorem 28, we obtain h(0) > 0. Since for all t in (0, 1], h(t) =
g(t)
tr

> 0, we have for

all t in [0, 1], h(t) > 0. Since h(t) is continuous on the closed interval [0, 1], it attains

its minimum value mh on [0, 1]. Clearly, mh > 0.

Let ε1 = mh > 0. By Theorem 1, there exists a positive integer M1 ≥ n − r such

that for all integers d ≥ M1 and k = 0, 1, . . . , d, we have
∣∣∣∣γk,d − h(kd

)∣∣∣∣ < ε1, where

γ0,d, γ1,d, . . . , γd,d satisfy

h(t) =
d∑

k=0

γk,dbk,d(t). (B.6)

Thus, for all d ≥M1 and all k = 0, 1, . . . , d,

γk,d > h

(
k

d

)
− ε1 ≥ mh −mh = 0.

Combining Equations (B.5) and (B.6), we have

g(t) = trh(t) = tr
d∑

k=0

γk,dbk,d(t) = tr
d∑

k=0

γk,d

(
d

k

)
tk(1− t)d−k

=
d∑

k=0

γk,d
(
d
k

)(
d+r
k+r

) (d+ r

k + r

)
tk+r(1− t)d−k =

d+r∑
k=r

γk−r,d
(
d
k−r
)(

d+r
k

) bk,d+r(t) =
d+r∑
k=0

βk,d+rbk,d+r(t),

where βk,d+r are the coefficients of the Bernstein polynomial of degree d+ r of g and

βk,d+r =


0, for 0 ≤ k < r

γk−r,d( d
k−r)

(d+rk ) > 0, for r ≤ k ≤ d+ r.

Thus, when m = d+ r ≥M1 + r, we have for all k = 0, 1, . . . ,m,

βk,m ≥ 0. (B.7)

Let

g∗(t) = 1− g(t). (B.8)

Then g∗ maps the open interval (0, 1) into (0, 1) with g∗(0) = 1, g∗(1) = 0. Denote by

s the multiplicity of 1 as a root of g∗(t). Thus, we can factorize g∗(t) as

g∗(t) = (1− t)sh∗(t), (B.9)
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where h∗(t) is a polynomial satisfying that h∗(1) 6= 0. As in the proof of Theorem 28, we

obtain h∗(1) > 0. Since for all t in [0, 1), h∗(t) =
g∗(t)

(1− t)s
> 0, we have for all t ∈ [0, 1],

h∗(t) > 0. Since h∗(t) is continuous on the closed interval [0, 1], it attains its minimum

value m∗h on [0, 1]. Clearly, m∗h > 0.

Let ε2 = m∗h > 0. By Theorem 1, there exists a positive integer M2 ≥ n − s such

that for all integers q ≥ M2 and k = 0, 1, . . . , q, we have
∣∣∣∣γ∗k,q − h∗(kq

)∣∣∣∣ < ε2, where

γ∗0,q, γ
∗
1,q, . . . , γ

∗
q,q satisfy

h∗(t) =
q∑

k=0

γ∗k,qbk,q(t). (B.10)

Thus, for all q ≥M2 and all k = 0, 1, . . . , q,

γ∗k,q > h∗
(
k

q

)
− ε2 ≥ m∗h −m∗h = 0.

Combining Equations (B.8), (B.9) and (B.10), we have

g(t) = 1− g∗(t) = 1− (1− t)sh∗(t) = 1− (1− t)s
q∑

k=0

γ∗k,qbk,q(t)

= 1− (1− t)s
q∑

k=0

γ∗k,q

(
q

k

)
tk(1− t)q−k = 1−

q∑
k=0

γ∗k,q
(
q
k

)(
q+s
k

) (q + s

k

)
tk(1− t)q+s−k.

Further using (2.4), we obtain

g(t) =
q+s∑
k=0

bk,q+s(t)−
q∑

k=0

γ∗k,q
(
q
k

)(
q+s
k

) bk,q+s(t) =
q+s∑
k=0

βk,q+sbk,q+s(t),

where the βk,q+s’s are the coefficients of the Bernstein polynomial of degree q + s of g:

βk,q+s =


1− γ∗k,q(qk)

(q+sk ) < 1, for 0 ≤ k ≤ q

1, for q < k ≤ q + s.

Thus, when m = q + s ≥M2 + s, we have for all k = 0, 1, . . . ,m,

βk,m ≤ 1. (B.11)
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According to Equations (B.7) and (B.11), if we select an m0 ≥ max{M1 + r,M2 + s},

then g(t) can be expressed as a Bernstein polynomial of degree m0:

g(t) =
m0∑
k=0

βk,m0bk,m0(t),

with 0 ≤ βk,m0 ≤ 1, for all k = 0, 1, . . . ,m0, Therefore, g ∈ U . �

Lemma 13

If a polynomial p is in the set U , then the polynomial 1− p is also in the set U . �

Proof. Since p is in the set U , there exist n ≥ 1 and 0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1 such

that

p(t) =
n∑
k=0

βk,nbk,n(t).

By Equation (2.4), we have

1− p(t) =
n∑
k=0

bk,n(t)−
n∑
k=0

βk,nbk,n(t) =
n∑
k=0

(1− βk,n)bk,n(t) =
n∑
k=0

γk,nbk,n(t),

where γk,n = 1− βk,n satisfying 0 ≤ γk,n ≤ 1, for all k = 0, 1, . . . , n. Therefore, 1− p is

in the set U . �

Corollary 4

Let g be a polynomial of degree n mapping the open interval (0, 1) into (0, 1) with

0 < g(0), g(1) ≤ 1. Then g ∈ U . �

Proof. Let polynomial h = 1−g. Then hmaps (0, 1) into (0, 1) with 0 ≤ h(0), h(1) < 1.

By Theorem 28, h ∈ U . By Lemma 13, g = 1− h is also in the set U . �

Corollary 5

Let g be a polynomial of degree n mapping the open interval (0, 1) into (0, 1) with

g(0) = 1 and g(1) = 0. Then g ∈ U . �
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Proof. Let the polynomial h = 1 − g. Then h maps (0, 1) into (0, 1) with h(0) =

0, h(1) = 1. By Theorem 29, h ∈ U . By Lemma 13, g = 1− h is also in the set U . �

Combining Theorem 28, Theorem 29, Corollary 4 and Corollary 5, we show that V ⊆ U .

Theorem 30

V ⊆ U. �

Proof. Based on the definition of V , for any polynomial p ∈ V , we have one of

following five cases.

1. The case where p ≡ 0 or p ≡ 1. In the proof of Theorem 27, we have shown that

0 ∈ U and 1 ∈ U . Thus p ∈ U .

2. The case where p maps the open interval (0, 1) into (0, 1) with 0 ≤ p(0), p(1) < 1.

By Theorem 28, p ∈ U .

3. The case where p maps the open interval (0, 1) into (0, 1) with 0 < p(0), p(1) ≤ 1.

By Corollary 4, p ∈ U .

4. The case where p maps the open interval (0, 1) into (0, 1) with p(0) = 0 and

p(1) = 1. By Theorem 29, p ∈ U .

5. The case where p maps the open interval (0, 1) into (0, 1) with p(0) = 1 and

p(1) = 0. By Corollary 5, p ∈ U .

In summary, for any polynomial p ∈ V , we have p ∈ U . Thus, V ⊆ U . �

Based on Theorems 27 and 30, we have proved Theorem 2.



Appendix C

A Proof of Theorem 11

We first show that the ideal values p∗ik are all in the unit interval.

Lemma 14

For all 0 ≤ k ≤ n+ 1, 0 ≤ p∗ik ≤ 1. �

Proof. We prove the claim by induction.

Base case: Since p∗i0 = q, we have 0 ≤ p∗i0 ≤ 1.

Inductive step: Assume that for some 0 ≤ k ≤ n, 0 ≤ p∗ik ≤ 1. Based on our

algorithm, when p∗ik > pik , we have

p∗ik+1
=
p∗ik − pik
1− pik

or
1− p∗ik
1− pik

.

It is not hard to see that 0 ≤ p∗ik+1
≤ 1.

When p∗ik ≤ pik , we have

p∗ik+1
=
p∗ik
pik

or 1−
p∗ik
pik

.

It is not hard to see that 0 ≤ p∗ik+1
≤ 1.
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Thus, the statement holds for k + 1. This completes the inductive proof. �

We can now prove Theorem 11.

Theorem 11

In Scenario Two, given a set S = {p1, p2, . . . , pn} and a target probability q, let p be

the output probability of the circuit constructed by the greedy algorithm. We have

|p− q| ≤ 1
2

n∏
k=1

max{pk, 1− pk}. �

Proof. Let w be the output probability of the circuit Cn+1. Since we choose the

circuit that has the smallest difference between its output probability and the output

probability q among the circuits C0, . . . , Cn+1 as the final construction, we have |p−q| ≤

|w − q|. We only need to prove that

|w − q| ≤ 1
2

n∏
k=1

max{pk, 1− pk}.

Based on our algorithm, the circuit Cn+1 is a concatenation of n + 1 logic gates,

each being either an AND gate or an OR gate. Denote the output probability of the

i-th gate from the beginning as wi.

Suppose that P (xn+1 = 1) = pin+1 ∈ {0, 1}. Based on our choice of pin+1 , we have

|pin+1 − p∗in+1
| = min{|p∗in+1

|, |1− p∗in+1
|}.

Thus,

|pin+1 − p∗in+1
| ≤ 1

2
(|p∗in+1

|+ |1− p∗in+1
|).

From Lemma 14, we have 0 ≤ p∗in+1
≤ 1. Thus, we obtain

|pin+1 − p∗in+1
| ≤ 1

2
. (C.1)

Next, we will show by induction that for all 1 ≤ k ≤ n+ 1, we have

|wk − p∗in+1−k
| ≤ 1

2

k∏
j=1

max{pin+1−j , 1− pin+1−j}. (C.2)
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Base case: If the first gate is an OR gate, then we have

w1 = pin + (1− pin)pin+1 .

From Equation (4.15), we have

p∗in = pin + (1− pin)p∗in+1
.

Thus,

|w1 − p∗in | = (1− pin)|pin+1 − p∗in+1
|.

Applying Equation (C.1), we have

|w1 − p∗in | ≤
1
2

(1− pin) ≤ 1
2

max{pin , 1− pin}

=
1
2

1∏
j=1

max{pin+1−j , 1− pin+1−j}.
(C.3)

Similarly, if the first gate is an AND gate, we can also get Equation (C.3). Thus, the

statement holds for the base case.

Inductive step: Assume that the statement holds for some 1 ≤ k ≤ n. Now consider

k + 1. Based on our algorithm, there are four cases:

1. The (k + 1)-th gate from the beginning is an OR gate with one input connected

to the output of the k-th gate.

2. The (k + 1)-th gate from the beginning is an OR gate with one input connected

to the inverted output of the k-th gate.

3. The (k+ 1)-th gate from the beginning is an AND gate with one input connected

to the output of the k-th gate.

4. The (k+ 1)-th gate from the beginning is an AND gate with one input connected

to the inverted output of the k-th gate.
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In the first case, we have

wk+1 = pin−k + (1− pin−k)wk.

In this case, the relation between the ideal values p∗in+1−k
and p∗in−k is

p∗in−k = pin−k + (1− pin−k)p∗in+1−k
.

Thus,

|wk+1 − p∗in−k | = (1− pin−k)|wk − p∗in+1−k
|

≤ max{pin−k , 1− pin−k}|wk − p
∗
in+1−k

|.
(C.4)

Based on the induction hypothesis, we have

|wk − p∗in+1−k
| ≤ 1

2

k∏
j=1

max{pin+1−j , 1− pin+1−j}. (C.5)

Combining Equations (C.4) and (C.5), we have

|wk+1 − p∗in−k | ≤
1
2

k+1∏
j=1

max{pin+1−j , 1− pin+1−j}. (C.6)

In the other three cases, we can similarly derive Equation (C.6). Thus, the statement

holds for k + 1. This completes the induction proof.

Note that pi0 ∈ {0, 1} and {pi1 , . . . , pin} = {p1, . . . , pn}. Thus, when k = n + 1,

Equation (C.2) can be written as

|wn+1 − p∗i0 | ≤
1
2

n∏
j=1

max{pj , 1− pj}.

Based on our algorithm, we have wn+1 = w, the output probability of the circuit Cn+1,

and p∗i0 = q. Thus, we obtain

|w − q| ≤ 1
2

n∏
j=1

max{pj , 1− pj}. �
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