Design of in vitro Synthetic Gene Circuits

Elisa Franco Richard M. Murray

15 June 2010 IWBDA

Programming large scale circuits

Bottom-up approach: In vitro molecular programming

OBJECTIVES:

Design and synthesis of biologically plausible feedback loops

Understand and implement design principles

Use few components: DNA and enzymes (off the shelf)

In vitro genetic circuits: our tool kit

Programming a reaction network for rate regulation

Interconnecting modules

Insulating devices

In vitro genetic circuits: the key ideas Kim and Winfree Nature MSB06

Simplification of feedback loops: Transcription is switched on and off without transcription factors Switching: by toehold mediated branch migration - Yurke 03

Design and specification of parts

SOFTWARE:

Programming a simple biochemical network

Produce reactants R1, R2 R1, R2 >> output P

$$T_1 \stackrel{k_1}{\rightharpoonup} R_1$$

$$T_2 \stackrel{k_2}{\rightharpoonup} R_2$$

$$R_1$$

$$+R_2 \stackrel{k^+}{\underset{k^-}{\rightharpoonup}} P$$

Objective: steady flow of P

Constraints: avoid bottlenecks and waste of resources

IDEAS:

Negative feedback

Design network to decrease excess species

Positive feedback

Design network to stimulate production of less abundant species

Self repression based flow regulation

- Transcriptional circuits implementation
- Reactants: transcripts
- Product: RNA complex
- Circuit design:

Modeling the dynamics

Mass action kinetics

Activation

Inhibition

Output

$$R_{i} + A_{i} \stackrel{k_{R_{i}A_{i}}}{\rightarrow} R_{i}A_{i}$$

$$R_{i} + T_{i}A_{i} \stackrel{k_{R_{i}T_{i}A_{i}}}{\rightarrow} R_{i}A_{i} + T_{i}$$

$$R_{i} + R_{j} \stackrel{k_{R_{i}R_{j}}}{\rightarrow} R_{i}R_{j}$$

$$R_{j} + T_{i} \stackrel{k_{R_{j}T_{i}}}{\rightarrow} R_{j}T_{i}$$

 $T_i + A_i \stackrel{k_{T_i A_i}}{\to} T_i A_i$

Unwanted interactions

Enzymatic reactions: RNA polymerase - production of transcripts RNase H - degradation of DNA/RNA hybrids

Michaelis-Menten kinetics

$$\begin{aligned} \mathbf{R}_{\mathbf{p}} + T_{i}A_{i} &\stackrel{k_{ON}^{+}ii}{\leftarrow} \mathbf{R}_{\mathbf{p}} \cdot T_{i}A_{i} \stackrel{k_{catONii}}{\rightarrow} \mathbf{R}_{\mathbf{p}} + T_{i}A_{i} + R_{i} \\ \mathbf{R}_{\mathbf{p}} + T_{i} &\stackrel{k_{OF}^{+}Fii}{\leftarrow} \mathbf{R}_{\mathbf{p}} \cdot T_{i} \stackrel{k_{catOFFii}}{\rightarrow} \mathbf{R}_{\mathbf{p}} + T_{i} + R_{i} \\ \mathbf{R}_{\mathbf{h}} + R_{i}A_{i} \stackrel{k_{Hii}}{\leftarrow} \mathbf{R}_{\mathbf{h}} \cdot R_{i}A_{i} \stackrel{k_{catHii}}{\rightarrow} \mathbf{R}_{\mathbf{h}} + A_{i} \\ \mathbf{R}_{\mathbf{h}} + R_{j}T_{i} \stackrel{k_{Hji}}{\leftarrow} \mathbf{R}_{\mathbf{h}} \cdot R_{j}T_{i} \stackrel{k_{catHji}}{\rightarrow} \mathbf{R}_{\mathbf{h}} + T_{i} \\ \mathbf{R}_{\mathbf{p}} + R_{j}T_{i} \stackrel{k_{Hji}}{\leftarrow} \mathbf{R}_{\mathbf{p}} \cdot R_{j}T_{i} \stackrel{k_{catHji}}{\rightarrow} \mathbf{R}_{\mathbf{p}} + R_{j}T_{i} + R_{i} \end{aligned}$$

Faster

Experimental results

Ratio plot

Cross activation circuit design

Preliminary data Current design is asymmetric

In vitro genetic circuits: our tool kit

Programming a reaction network for rate regulation

Interconnecting modules

Insulating devices

Interconnections can introduce unwanted dynamics

Del Vecchio et al. Nature MSB 2008

Existing theoretical results suggest how to design an insulating device

Del Vecchio, Ninfa and Sontag, MSB08; Del Vecchio, Jayanthi, ACC08

Structural assumptions

$$\Sigma : \begin{array}{l} \dot{x} = f(x, u, s) \\ y = Y(x, u, s) \\ r = R(x, u, s) \\ x = (x_1, \dots, x_n) \in \mathcal{D} \subseteq \mathbb{R}^n_+ \end{array}$$

1)
$$u$$
 positive scalars $y = x_n$

2)
$$\Omega: \dot{u} = f_0(t, u)$$
 prior to the interconnection

3)
$$\Sigma: \dot{x} = \begin{pmatrix} Gf_1(x,u) \\ Gf_2(x) \\ \vdots \\ Gf_{n-1}(x) \\ Gf_n(x) \end{pmatrix}$$

4)
$$\Lambda: \dot{
u} = \left(egin{array}{cc} g_1(
u,y) \\ g_2(
u) \\ \vdots \\ g_p(
u) \end{array}
ight)$$

5) Parasitic signals are additive $\dot{u} = f_0(t, u) + r(x, u)$

$$\dot{x}_n = \dot{y} = Gf_n(x) + s(\nu, y)$$

6) Conservation laws $r(x, u) = -Gf_1(x, u)$ $s(\nu, y) = -g_1(\nu, y)$

Existing theoretical results suggest how to design an insulating device

Stability assumption:

Define:

$$F : \mathbb{R}_{+} \times \mathcal{D} \to \mathbb{R}^{n}$$

$$F(a, x) = (f_{1}(x, a - x_{1}), f_{2}(x), ..., f_{n}(x))$$

$$a \in \mathbb{R}_{+}$$

$$x \in \mathcal{D}$$
The level

The Jacobian:

$$DF_x(a,x)$$

has all eigenvalues with negative real part in all its domain

17 Elisa Franco, Caltech

 $\int Gf_1(x, y)$

The insulation property is achieved if the device is sufficiently fast

Claim 1 There exist G* sufficiently large such that for any G>G*:

$$\parallel x^{\mathrm{ref}}(t) - x(t) \parallel = \mathcal{O}(1/G)$$

Where $x^{ref}(t)$ is the state of the device when the load is absent, i.e. $s(\nu, y) = 0$

Claim 2 There exist G' sufficiently large such that for any G>G':

$$u(t) = \bar{u}(t) + \mathcal{O}(1/G) \qquad \text{where} \quad \frac{d\bar{u}}{dt} = f_0(t, u) \left(\frac{1}{(1 + \partial \gamma_1(\bar{u})/\partial \bar{u})}\right)$$

Low output retroactivity

All proofs are based on timescale separation

Can we make an insulator in an in vitro setting?

Input U drives a switch RNA output binds to RNA load

Reactions for a transcriptional insulator

Input stage $\emptyset \stackrel{p_U(t)}{\rightharpoonup} U(t) \stackrel{d_U(t)}{\rightharpoonup} \emptyset$ $D_I + U \stackrel{k_{IU}^+}{\underset{k_{IU}^-}{\rightharpoonup}} \widehat{D_I U}$ $\widehat{D_A D_I} + U \stackrel{k_{AIU}}{\rightharpoonup} \widehat{D_I U} + D_A$

$$\begin{aligned} & D_A + D_T \stackrel{k_{AT}}{\rightharpoonup} \widehat{D_A D_T}, \\ & \widehat{D_A D_T} + D_I \stackrel{k_{AIT}}{\rightharpoonup} D_T + \widehat{D_A D_I}, \\ & D_A + D_I \stackrel{k_{AI}}{\rightharpoonup} \widehat{D_A D_I}. \end{aligned}$$

$$& p_{R_Y}(t) = \alpha h \left(\frac{[\widehat{D_A D_T}]}{K_{MP}} \right) \\ & d_{D_D R_Y}(t) = \gamma h \left(\frac{[\widehat{D_D R_Y}]}{K_{MH}} \right) \end{aligned}$$

$$\emptyset^{p_L(t)} R_L(t),$$
 $R_Y + R_L \stackrel{k_{YL}}{\rightharpoonup} \widehat{R_Y R_L}$

Structural assumptions: dynamic gain can be tuned

- Fast toehold kinetics
- High enzyme concentrations/ activities

$$= \begin{pmatrix} Gf_1(x,u) \\ Gf_2(x) \\ \vdots \\ Gf_{n-1}(x) \\ Gf_n(x) \end{pmatrix}$$

Output

Structural assumptions: additive retroactivity and conservation laws

Input

$$\dot{U} = +p_U(t) - d_U(t) - k_{IU}^+ D_I U + k_{IU}^- \widehat{D_I U}$$

$$\dot{u} = f_0(t, u) + r(x, u)$$

Output

Structural assumptions: stability

Jacobian of the dynamics of the core device:

$$DF_x(a,x) = \begin{bmatrix} P & \emptyset \\ L & Q \end{bmatrix}$$
 Lower diagonal

The eigenvalues have negative real part at any equilibrium point.

All structural assumptions are verified.

- Claim 1 holds: Low output retroactivity
- Claim 2 holds: Low input retroactivity

Note: Analytical mapping I/O not available, device may work in non linear regime

Simulation results

Programming synthetic biomolecular systems: embedding engineering principles in the hardware of life

Designing and building biosynthetic systems is today

- Easier
- Faster
- Cheaper

• In vitro bio-computational networks

· Scaling up networks, modularity

THANKS:

Richard Murray, Caltech CDS and BE Erik Winfree, Caltech CS, CNS and BE

Institute for Collaborative Biotechnologies (ICB) NSF Molecular Programming Project Caltech Jongmin Kim, Fei Chen Lund University Per-Ola Forsberg, Chris Sturk, TU Munich Eike Friedrichs, Ralf Jungmann, Fritz Simmel