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Foreward 

Welcome to the Second International Workshop on Bio-Design Automation at DAC! 
  
IWBDA brings together researchers from the synthetic biology and design automation com-
munities.  Still in its early stages, the field of synthetic biology has been driven by experimen-
tal expertise; much of its success has been attributable to the skill of the researchers in specific 
domains of biology. There has been a concerted effort to assemble repositories of standardized 
components. However, creating and integrating synthetic components remains an ad hoc proc-
ess. The field has now reached a stage where it calls for computer-aided design tools. The elec-
tronic design automation (EDA) community has unique expertise to contribute to this en-
deavor.  This workshop offers a forum for cross-disciplinary discussion, with the aim of seed-
ing collaboration between the research communities. 
  
This year, the program consists of 14 talks and 18 poster presentations. These are organized 
into 4 sessions: Tools for Bio-Design Automation, Modeling and Standards for Bio-Design, 
Design of Biological Circuits and Networks and Biological Pathway and Network Optimiza-
tion.  In addition, we are very pleased to have four very distinguished invited speakers, Roger 
Brent, Pamela Silver, J. Chris Anderson and Richard Murray. Also we have two tutorial ses-
sions: DNA Nanostructures and CAD for Genetic Circuits. 
  
We thank all the participants for contributing to IWBDA; we thank the Program Committee 
for reviewing abstracts; and we thank everyone on the Executive Committee for their time and 
dedication. Finally, we thank Artist, Cadence, Combest, DNA 2.0, GenoCAD, Life Technolo-
gies, Microsoft Research and Synthetic Biology.net for supporting the workshop financially. 
  
Marc Riedel, General Chair 
Doug Densemore, General Secretary 
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Roger was born in Spartanburg, South Carolina in 1955. He received a BA in Computer Science and Mathematics from 
the University of Southern Mississippi in 1973, where he did some work attempting to apply AI techniques to protein 
folding. He went on to get a Ph.D. in Biochemistry and Molecular Biology from Harvard University in 1982 for studies 
with Mark Ptashne. As a graduate student, he showed that the E. coli lexA gene repressed genes involved in the response 
to radiation damage, cloned the gene, produced and purified its protein product using and in some cases extending the 
newly developed recombinant DNA methods, and studied binding of the repressor to its operators, showing that its dif-
ferential binding affinity for these sites affected the timing of the response. As a postdoctoral fellow, also with Mark 
Ptashne, he tested a number of ideas about the mechanism of transcription regulation in yeast by using the prokaryotic 
LexA protein and in subsequent experiments creating chimeric proteins that carried LexA fused to activators native to 
yeast. These "domain swap" experiments established the modular nature of eukaryotic transcription regulators. 

In 1985, Roger became a Professor at Massachusetts General Hospital and Harvard Medical School Department of Ge-
netics. He and his coworkers used yeast transcription that depended on chimeric DNA bound proteins as a genetic probe 
for protein function in higher organisms. This work led to the development of working two-hybrid methods (1988-
1993), to the ability to scale them up via interaction mating (1992-1994), and to the eventual development of protein 
interaction methods as a useful way to learn more about biological function. In parallel, Roger and his coworkers devel-
oped peptide aptamers as reverse "genetic" agents to study the function of proteins and allelic protein variants (1999-
2001), and, more recently, as dominant forward "genetic" reagents to identify genes and pathway linkages in organisms, 
such as human cells, that are intractable to classical genetic analysis. (Perhaps as important as the actual technologies is 
the coeval development of ideology (e.g. doctrine) for using them.) This work is described in about 80 research papers 
and reviews. 

In parallel to his academic work, Roger is a longtime (since 1984) advisor to the biotech and pharmaceutical industries. 
He served on the SAB of American Home Products (Genetics Institute/Wyeth Ayerst Research), chairs scientific advi-
sory boards for several smaller companies, and does significant ad hoc consulting work in genomics and computational 
biology. He is one of the founders (1987-2001) of Current Protocols, including Current Protocols in Molecular Biology, 
a "how to clone it" manual, which is updated every three months and has about 10,000 subscribing labs. He is founder 
and organizer (since 1994) of the "After the Genome" workshops. He is an inventor on 11 issued and several pending 
US Patents. Since the middle 1990s, he has exhorted and advised various bodies in the US and abroad on functional ge-
nomics and computational biology, including the National Institutes of Health, the Welcome Trust, the National Science 
Foundation, Department of Energy, Defense Advanced Research Projects Agency, and other parts of the US Defense 
Department. 

Roger joined the Molecular Sciences Institute in 1998 as Associate Director. He was named Director in 2000 and Presi-
dent and CEO in 2001. Brent joined the faculty of UCSF Department of Biopharmaceutical Sciences as an Adjunct Pro-
fessor in 2000 and was named a Senior Scholar of the Ellison Medical Foundation in 2001. 

In July 2009, Roger joined Fred Hutchinson Cancer Research Center as a Full Member in the Basic Sciences Division. 

Keynote Speaker: Roger Brent 
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Emma Weeding, Yiannis N. Kaznessis 
Dept. of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 
 

SynBioSS Designer: from DNA sequences to dynamic phenotypes and back. 
 
As a discipline with a strong engineering character, synthetic biology can benefit  from quantitative 

modeling.  There  is  indeed  an opportunity  for  the  development of  computer  software  tools  that  can 
tackle the challenges facing the synthetic biology community. Computer models of new gene networks 
can, in principle, shift through alternative designs and propose synthetic construction approaches before 
the synthetic biologist begins work in the wet lab [1,2].  

Despite  some progress  in  the development of  computer models,  there are gaps  in  the process of 
connecting DNA  sequences  to  targeted  phenotypes  using  software  tools.  For  example,  there  are  no 
universally  accepted  methods  for  representing  synthetic  biomolecular  systems.  Should  all  of  the 
molecular components be included (e.g. promoters, operators, ribosome binding sites, RNApolymerase, 
ribosomes,  among  others),  or  is  a more  reduced  representation more  appropriate?  Is  the  dynamic 
behavior important, or are steady‐state approximations? And can there be a modeling formalism that is 
applicable to a wide variety of synthetic constructs and amenable to automation? 

In  this work we will present a standardized algorithmic process  for generating models of synthetic 
gene regulatory networks that is applicable to any synthetic construct and is suitable for automation. In 
particular, we present a new component of our Synthetic Biology Software Suite (SynBioSS), [3], we call 
Designer. Designer is a web‐based tool that allows users to enter DNA components and obtain networks 
of  reactions.  Designer  does  this  automatically,  using  universal  principles  of  molecular  biology. 
Importantly, Designer can  take as  input BioBricks, which are standard DNA  sequences used widely by 
the synthetic biology community.  

SynBioSS Designer  takes as  input molecular parts  involved  in gene expression and  regulation  (e.g. 
promoters,  transcription  factors,  ribosome binding  sites,  etc.),  and  automatically  generates  complete 
networks of reactions that represent transcription, translation, regulation, induction and degradation of 
those parts.  In  this work we describe how Designer uses universal principles of molecular biology  to 
generate models of any arbitrary synthetic biological system. These models are useful as  they explain 
biological phenotypic complexity in mechanistic terms. In turn, such mechanistic explanations can assist 
in  designing  synthetic  biological  systems.  We  will  discuss,  giving  practical  guidance  to  users,  how 
Designer  interfaces with  the Registry of Standard Biological Parts,  the de  facto  compendium of parts 
used in synthetic biology applications. 

Designer  is  freely  available  at www.synbioss.org/Designer.  It  has  a  tabbed  interface, making  the 
complete  sequence  of  BioBricks,  or  other,  custom‐defined  parts,  visually  accessible  and  easily 
manipulated. Clicking on a  tab pulls up properties of  that  individual brick and allows  the user  to add, 
edit, and delete  said properties. Properties are also easy  to edit; clicking directly on an editable  field 
causes  a  text  input  field  or  drop‐down  menu  will  appear,  allowing  the  user  to  make  appropriate 
changes. 

A user can enter biological components, including BioBricks, in SynBioSS Designer, and receive as an 
output an SBML file with a reaction network that models the BioBricks.  With the database of BioBricks, 
Designer can be used  to streamline model construction. All  information  is now automatically, quickly, 
and accurately retrieved, added to the current Designer construct, and displayed, ready to be edited  if 
necessary. 

We will give practical guidance, going over three examples: a BioBrick from the Registry of biological 
parts,  an AND‐gate  and  a  custom‐made  tetracycline‐inducible  feedback  loop. We will discuss how  to 
determine the DNA sequence of a synthetic construct so as to optimize a targeted dynamic behavior.  
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In what follows we present only one of the three walkthrough examples to use Designer.  

 

WALKTHROUGH EXAMPLE: MODELING A CUSTOM AND GATE 

One  is not  required  to use BioBricks  to create a  system; a user can  just as easily create a 

device using  customized biological parts. For example, one  can  recreate  the  single promoter 

AND  gates  detailed  by  Ramalingam  and  coworkers  (“Forward  engineering  of  synthetic  bio‐

logical AND gates”, Biochemical Engineering Journal, Volume 47, Issues 1‐3, 1 December 2009, 

Pages 38‐47).  

The key element of such a device is the promoter, which is constructed with elements of the 

tet, lac, and λ‐phage promoters, and contains a particular combination of tet and lac operators. 

TetR and LacI proteins are constitutively expressed  in the system, and thus without additional 

input, the promoter is repressed. In other words, GFP is produced only when both aTc and IPTG 

are present. 

The paper by Ramalingam and coworkers details six combinations, but we will focus on the 

LTT  configuration:  one  lac  operator  upstream  of  the  ‐35  site  (lacO1),  one  tet  operator 

downstream of  the  ‐10  site  (tetO2), and another  tet operator between  the  ‐35 and  ‐10  sites 

(tetO1). 

 

Creating the Device in Designer 

Throughout this process, we shall use terminology identical to that used by Ramalingam and 

coworkers  in  order  to  facilitate  comparison  between  the  automatically  generated  Designer 

reaction network, and the manually created reaction network in the paper. 



The  first  step  is  to  add  the  series  of  parts.  Figure  S1  illustrates  how  to  add  the  hybrid 

promoter, which we name “lacP”. This is followed by an RBS, simply called “RBS”, then a coding 

region, also plainly labeled as “DNA”, and finally a terminator titled “Terminator”. 

Figure S1 

 

Because this device is entirely custom‐made, the user must specify operator site and protein 

information manually. The operator  site  information  is  shown  in  Figure  S2, while  the  coding 

region “DNA”  is specified  to correspond  to  the protein “gfp” of  type “reporter”  (not shown). 

Also note the entire sequence of parts shown in Figure S2. 

Figure S2 

 

The second step, inputting protein specifics, is carried out in the same manner as described 

in  the manuscript.  In  this  system,  there  are  two  constitutively expressed  repressor proteins: 

LacI and TetR. The former is active as a tetramer and binds the lac operator (lacO1). The latter 



repressor  is  active  as  a dimer,  and binds  the  two  tet operators  (tetO1  and  tetO2). The  final 

“Current Proteins” table after inputting all of these specifics into Designer is shown in Figure S3. 

Figure S3 

 

Likewise, the third and final step, effector input, is performed in a similar manner as in  the 

manuscript.  Along  with  aTc,  this  system  contains  IPTG  instead  of  HSL.  The  final  “Current 

Effectors” table is shown in Figure S4. 

Figure S4 

 

Designer can now generate a NetCDF or SBML file containing a reaction network describing 

this AND gate. This series of reactions and corresponding kinetic data is shown in the following 

section. 

Reaction Network: Modeling a Custom AND Gate 
Protein Multimerization  Kinetic Data 
2 lacI → lacI2  1000000000 
lacI2 → 2 lacI  0 
2 lacI → lacI4  1000000000 
lacI4 → 2 lacI2  0 
2 tetR → tetR2  1000000000 
tetR2 → 2 tetR  0 
Transcription   
RNAp + lacP + tetO2 + tetO1 + lacO1 →RNAp:lacP:tetO2:tetO1:lacO1  0.0166 
RNAp:lacP:tetO2:tetO1:lacO1 → RNAp + lacP + tetO2 + tetO1 + lacO1  0.75 
RNAp:lacP:tetO2:tetO1:lacO1 → RNAp:lacP:tetO2:tetO1:lacO1*  0.3 
RNAp:lacP:tetO2:tetO1:lacO1* → RNAp:DNA_gfp + lacP + tetO2 + tetO1 + lacO1  30 
RNAp:DNA_gfp → RNAp + mRNA_gfp  30 nt/s, 600 nt
Translation   
rib + mRNA_gfp →rib:mRNA_gfp  100000 



rib:mRNA_gfp → rib:mRNA_gfp_1 + mRNA_gfp  33 aa/s 

rib:mRNA_gfp_1 → rib + gfp 
33  aa/s,  220 

aa 
Regulation   
lacI4 + lacO1 → lacI4:lacO1  1000000000 
lacI4:lacO1 → lacI4 + lacO1  0.005 
tetR2 + tetO1 → tetR2:tetO1  1000000000 
tetR2:tetO1 → tetR2 + tetO1  0.005 
tetR2 + tetO2 → tetR2:tetO2  1000000000 
tetR2:tetO2 → tetR2 + tetO2  0.005 
Induction   
lacI4 + IPTG → lacI4:IPTG  50000000 
lacI4:IPTG → lacI4 + IPTG  0.1 
lacI4:IPTG + IPTG → lacI4:IPTG2  50000000 
lacI4:IPTG2 → lacI4:IPTG + IPTG  0.1 
lacI4:IPTG2 + IPTG → lacI4:IPTG3  50000000 
lacI4:IPTG3 → lacI4:IPTG2 + IPTG  0.1 
lacI4:IPTG3 + IPTG → lacI4:IPTG4  50000000 
lacI4:IPTG4 → lacI4:IPTG3 + IPTG  0.1 
lacI4:IPTG + lacO1 → lacI4:IPTG:lacO1  1000000000 
lacI4:IPTG:lacO1 → lacI4:IPTG + lacO1  0.7 
lacI4:lacO1 + IPTG → lacI4:IPTG:lacO1  1000000 
lacI4:IPTG:lacO1 → lacI4:lacO1 + IPTG  0.4 
lacI4:IPTG2 + lacO1 → lacI4:IPTG2:lacO1  1000000 
lacI4:IPTG2:lacO1 → lacI4:IPTG2 + lacO1  0.4 
lacI4:IPTG3 + lacO1 → lacI4:IPTG3:lacO1  1000000 
lacI4:IPTG3:lacO1 → lacI4:IPTG3 + lacO1  0.4 
lacI4:IPTG4 + lacO1 → lacI4:IPTG4:lacO1  1000000 
lacI4:IPTG4:lacO1 → lacI4:IPTG4 + lacO1  0.4 
lacI4:IPTG:lacO1 + IPTG → lacI4:IPTG2:lacO1  50000000 
lacI4:IPTG2:lacO1 → lacI4:IPTG:lacO1 + IPTG  0.1 
lacI4:IPTG2:lacO1 + IPTG → lacI4:IPTG3:lacO1  50000000 
lacI4:IPTG3:lacO1 → lacI4:IPTG2:lacO1 + IPTG  0.1 
lacI4:IPTG3:lacO1 + IPTG → lacI4:IPTG4:lacO1  50000000 
lacI4:IPTG4:lacO1 → lacI4:IPTG3:lacO1 + IPTG  0.1 
tetR2 + aTc → tetR2:aTc  50000000 
tetR2:aTc → tetR2 + aTc  0.1 
tetR2:aTc + aTc → tetR2:aTc2  50000000 
tetR2:aTc2 → tetR2:aTc + aTc  0.1 
tetR2:aTc + tetO1 → tetR2:aTc:tetO1  1000000000 
tetR2:aTc:tetO1 → tetR2:aTc + tetO1  0.7 
tetR2:tetO1 + aTc → tetR2:aTc:tetO1  1000000 
tetR2:aTc:tetO1 → tetR2:tetO1 + aTc  0.4 
tetR2:aTc2 + tetO1 → tetR2:aTc2:tetO1  1000000 
tetR2:aTc2:tetO1 → tetR2:aTc2 + tetO1  0.4 
tetR2:aTc:tetO1 + aTc → tetR2:aTc2:tetO1  50000000 
tetR2:aTc2:tetO1 → tetR2:aTc:tetO1 + aTc  0.1 
tetR2:aTc + tetO2 → tetR2:aTc:tetO2  1000000000 



tetR2:aTc:tetO2 → tetR2:aTc + tetO2  0.7 
tetR2:tetO2 + aTc → tetR2:aTc:tetO2  1000000 
tetR2:aTc:tetO2 → tetR2:tetO2 + aTc  0.4 
tetR2:aTc2 + tetO2 → tetR2:aTc2:tetO2  1000000 
tetR2:aTc2:tetO2 → tetR2:aTc2 + tetO2  0.4 
tetR2:aTc:tetO2 + aTc → tetR2:aTc2:tetO2  50000000 
tetR2:aTc2:tetO2 → tetR2:aTc:tetO2 + aTc  0.1 
Non‐Specific DNA Interactions   
lacI4 + nsDNA → lacI4:nsDNA  1000 
lacI4:nsDNA → lacI4 + nsDNA  1.6225 
lacI4:IPTG + nsDNA → lacI4:IPTG:nsDNA  1000 
lacI4:IPTG:nsDNA → lacI4:IPTG + nsDNA  1.6225 
lacI4:nsDNA + IPTG → lacI4:IPTG:nsDNA  1000 
lacI4:IPTG:nsDNA → lacI4:nsDNA + IPTG  1.6225 
lacI4:IPTG2 + nsDNA → lacI4:IPTG2:nsDNA  1000 
lacI4:IPTG2:nsDNA → lacI4:IPTG2 + nsDNA  1.6225 
lacI4:IPTG3 + nsDNA → lacI4:IPTG3:nsDNA  1000 
lacI4:IPTG3:nsDNA → lacI4:IPTG3 + nsDNA  1.6225 
lacI4:IPTG4 + nsDNA → lacI4:IPTG4:nsDNA  1000 
lacI4:IPTG4:nsDNA → lacI4:IPTG4 + nsDNA  1.6225 
lacI4:IPTG:nsDNA + IPTG → lacI4:IPTG2:nsDNA  1000 
lacI4:IPTG2:nsDNA → lacI4:IPTG:nsDNA + IPTG  1.6225 
lacI4:IPTG2:nsDNA + IPTG → lacI4:IPTG3:nsDNA  1000 
lacI4:IPTG3:nsDNA → lacI4:IPTG2:nsDNA + IPTG  1.6225 
lacI4:IPTG3:nsDNA + IPTG → lacI4:IPTG4:nsDNA  1000 
lacI4:IPTG4:nsDNA → lacI4:IPTG3:nsDNA + IPTG  1.6225 
tetR2 + nsDNA → tetR2:nsDNA  1000 
tetR2:nsDNA → tetR2 + nsDNA  1.6225 
tetR2:aTc + nsDNA → tetR2:aTc:nsDNA  1000 
tetR2:aTc:nsDNA → tetR2:aTc + nsDNA  1.6225 
tetR2:nsDNA + aTc → tetR2:aTc:nsDNA  1000 
tetR2:aTc:nsDNA → tetR2:nsDNA + aTc  1.6225 
tetR2:aTc2 + nsDNA → tetR2:aTc2:nsDNA  1000 
tetR2:aTc2:nsDNA → tetR2:aTc2 + nsDNA  1.6225 
tetR2:aTc:nsDNA + aTc → tetR2:aTc2:nsDNA  1000 
tetR2:aTc2:nsDNA → tetR2:aTc:nsDNA + aTc  1.6225 
Leakiness   
RNAp + lacP + lacI4:lacO1 + tetO2 + tetO1 → RNAp:lacP:tetO2:tetO1:lacI4  0.0166 
RNAp:lacP:tetO2:tetO1:lacI4 → RNAp + lacP + lacI4:lacO1 + tetO2 + tetO1  0.75 
RNAp:lacP:tetO2:tetO1:lacI4 → RNAp:lacP:tetO2:tetO1:lacI4*  0.3 
RNAp:lacP:tetO2:tetO1:lacI4* → RNAp:DNA_gfp + lacP + lacI4:lacO1 + tetO2 + tetO1  30 
Transport   
0 → lacI4  1.00E‐10 
0 → tetR2  1.00E‐10 
Degradation   
lacI4 → 0  0.000289 
lacI4:nsDNA → nsDNA  0.000193 
gfp → 0  0.000289 



mRNA_gfp → 0  0.0015 
tetR2 → 0  0.000289 
tetR2:nsDNA → nsDNA  0.000193 
lacI4:IPTG → IPTG  0.000289 
lacI4:IPTG:nsDNA → IPTG + nsDNA  0.000193 
lacI4:IPTG2 → 2 IPTG  0.000289 
lacI4:IPTG2:nsDNA → 2 IPTG + nsDNA  0.000193 
lacI4:IPTG3 → 3 IPTG  0.000289 
lacI4:IPTG3:nsDNA → 3 IPTG + nsDNA  0.000193 
lacI4:IPTG4 → 4 IPTG  0.000289 
lacI4:IPTG4:nsDNA → 4 IPTG + nsDNA  0.000193 
tetR2:aTc → aTc  0.000289 
tetR2:aTc:nsDNA → aTc + nsDNA  0.000193 
tetR2:aTc2 → 2 aTc  0.000289 
tetR2:aTc2:nsDNA → 2 aTc + nsDNA  0.000193 
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As the field of synthetic biology advances, one of the visions is that engineers will be able to
build biological circuits using an efficient pipeline that takes them from the design process to
construction and testing. In order to make this vision a reality, several challenges need to
be overcome [1]. One of the challenges is a computational framework that can support
mathematical modeling as well as information necessary for experiments [2]. Such a
framework is required in order to build models using real biological components instead
than hypothetical variables and parameters. The framework would also need to support
access to database(s) of biological parts as well an engineering concepts such as
modularity. The software application presented here, TinkerCell, is an example of how a
computer-aided design tool can partially fulfill this requirement [3].

TinkerCell is an application for visual design and analysis of synthetic biological circuits [3].
It is structured as a project to which the community can contribute. TinkerCell has a flexible
plug-in architecture allowing other researchers to write code that provide new functions in
TinkerCell. The code can be written in C, C++, or Python, and additional programming
languages will be added: Ruby, Perl, and R. This plug-in system permits TinkerCell to act
like a "host" to algorithms that other researchers have developed for analysis of biological
circuits. The types of functions provided by these plug-ins can range from mathematical
analysis to sequence analysis or database access. In order to support such wide range of
functions, TinkerCell's has adopted a structured yet flexible model representation. TinkerCell
models are composed of biological components such as proteins, RNA, promoters, or
operator sites. The list of biological components is obtained from an XML file; the idea is to
replace this file with a standard ontology of biological components in future. Each
component in a TinkerCell model has default parameters and other attributes associated
with it. For example, every promoter has a "strength" parameter that indicates how well
RNA polymerase binds to the specific promoter. Similarly, reactions such as transcriptional
regulation have "Kd", the dissociation constant. Each parameter is defined in reference to
the component in the model that it belongs with, which is different from traditional models
where parameters are generally defined independent of the variables. Storing parameters in
context of the parts allows TinkerCell to import parts from a database along with their
parameters, which would be difficult to do if the model was simply represented as a set of
equations, variables, and parameters. Additionally, TinkerCell can store information such as
uncertainties associated with parameters [4]. Experimental data and other sequence related
information needed for experiments can also be stored in the model.

One main focus of TinkerCell is modular circuit design. TinkerCell allows users to
encapsulate a biological circuit into a module with interfaces. The interfaces are used to
connect one module to another. The circuit represented inside each module can be defined
visually or using a text-based language [5]. Connections between modules can take
different interpretations depending on the plug-in that is using that information. For



example, the plug-ins that perform simulation and similar mathematical analysis have a
specific interpretation of connections between modules: when two components from
separate modules are connected, those two components are merged into a single
component. For example, when an output protein in one module is connected to an input
protein in another module, then the simulation plug-in constructs a model in which the two
proteins are represented by the same variable. The user interface for building models using
modules allows encapsulating the internal details of a module, providing an interface similar
to MATLAB's Simulink (see Figure 1).

In conclusion, TinkerCell is a example of a computer-aided design tool for synthetic biology.
TinkerCell models are well structured and can hold a wide variety of information. The plug-
in capability is the key feature because other researchers can use TinkerCell as a means of
exposing their algorithms to the community. It will also benefit a user because more
analysis methods will be available in TinkerCell. The current list of functions include
deterministic and stochastic simulation, steady state analysis, se nsitivity analysis,
bifurcation analysis, and access to list of parts from RegulonDB. There are plans for adding
functions related to sequence annotation and parts validation.

Figure 1. TinkerCell's user interface for building models using modules allows encapsulating
the internal details of a module, providing an interface similar to MATLAB's Simulink.
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global uncertainty and sensitivity analysis in systems biology. Journal of theoretical biology,
254(1):178–196, 2008.
[5] L.P. Smith, F.T. Bergmann, D. Chandran, and H.M. Sauro. Antimony: A modular model
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Designing an engineered genetic regulatory network
to produce a desired behavior is an extremely difficult
task. Even given a combinatorial library of standard
biological parts, such as BioBricks[1], there are a wide
range of potential interactions between DNA, signaling
molecules, expression machinery, metabolic resources,
etc. As a result, a designer must solve a complicated
multi-dimensional constraint and optimization problem
in order to produce a working system.

Our goal is to improve the design of complicated
biological systems, by finding programming abstractions
and compilation techniques suitable for biological sys-
tems and then applying compiler and optimization algo-
rithms adapted from electronic computers. A biological
system designer would thus begin by expressing desired
system function using a biologically-focused high-level
programming language. The compiler transforms this
design systematically into a genetic regulatory network,
optimizing to conserve scarce biological resources (e.g.
metabolic load, applicable BioBrick parts). This design
can then be simulated and finally realized in cells with
DNA assembled using standard protocols such as Bio-
Bricks or BglBricks[2].

A number of other projects are also attempting to
address problems in biological systems design, mostly
either through modelling standards, such SBML[3] and
CellML[4], or means to simplify biological model build-
ing, such as Antimony[5], little b[6], and ProMoT[7]. A
few tools, like Eugene[8] and GenoCAD[9] are begin-
ning to offer the ability to do “assembly-language” level
composition of synthetic biology elements. Perhaps the
most similar to this project is GEC[10], which attempts
to automate the design process via iterative simulation.

We have chosen to work with designs expressed in
the Proto spatial computing language[11], as it seems
particularly well-matched to this goal:

• The Proto dataflow computation model matches
well with the continuous parallel expression of
proteins in genetic regulatory networks.

• Proto’s spatial primitives offer a path toward con-
struction of complex multicellular systems, such as
tissues and biofilms.

• We have previously shown that genetic regula-
tory networks generated from Proto programs are
good targets for standard compiler optimization
techniques[12].

At present, our compiler takes Proto programs ex-
pressed in a limited subset of the language and uses
design motifs to transform them into a genetic regulatory
network that uses chemical constants within the envelope
of experimentally verified synthetic biological systems.

Motif-based compilation associates each high-level
primitive with an abstract genetic regulatory network
pattern. Using an extension to the Proto language, we
associate high-level language primitives with design mo-
tifs. For example, a logical “not” operation is declared
as follows:

(primitive not (boolean) boolean
:bb-template
((P 0.193 R- arg0 outputs T)))

The first line declares the primitive operation “not” to
be a function that takes a boolean as input and returns
a boolean as output. The remainder of the expression
annotates this high-level function with a BioBrick motif
consisting of a single regulatory region. First comes a
promoter (P) annotated with the regulatory region’s con-
stitutive expression rate of 0.193 molecules per second.
This promoter is repressed (R-) by arg0, the first input
argument to the function. Then comes a placeholder for
proteins representing the function’s output, followed by
a terminator T.

More complex operations can be mapped to a motif
involving multiple regulatory regions, such as this two-
input logical “and”:

(primitive and (boolean boolean) boolean
:bb-template
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Fig. 1. Motif-based compilation associates each high-level primitive
with an abstract genetic regulatory network pattern, such as this
implementation of a two-input logical “and” operation. The compiler
transforms each operation in the program to a motif, linking them
together according to the flow of data in the computation.

((P 0.193 R- arg0 ?X T)
(P 0.193 R- arg1 ?Y T)
(P 0.193 R- ?X R- ?Y outputs T)))

In this case, the local variables ?X and ?Y create
connections between the three regulatory regions in the
motif, implementing the logical “and” as a “nor” gate
with inverters on each input (Figure 1).

Given a set of such mappings and a program, the
compiler transforms each operation in the program to
a motif, linking them together according to the flow of
data in the computation. The resulting genetic regulatory
network can be output in several forms, including a set of
generated MATLAB files that can be used for simulation
of the system. Currently this models the system with
ordinary differential equations, but in future work we
plan to output stochastic reactions as well.

We have transformed a number of Proto programs
into genetic regulatory networks using this compiler,
and simulation in MATLAB verifies that the behavior
of the genetic regulatory network correctly implements
the original program, even for highly complex systems
such as the two-bit adder shown in Figure 2, which the
compiler currently transforms into an unoptimized net-
work of 60 signal chemicals and 52 regulatory regions.

In future work, we plan to connect the compiler to
existing parts libraries such that a genetic regulatory
network can be compiled all the way to a DNA sequence
and assembly instructions for constructing this sequence
from standardized parts and to verify the behavior of
compiled programs in vivo. We also plan to implement
compiler optimizations, which we expect will improve
generated program size radically, and to expand coverage
to programs with extent in space and time.
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(a) High-Level 2-Bit Adder
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(b) Simulated chemical implementation

Fig. 2. A two-bit adder takes two 2-bit numbers as input and
produces a 2-bit number as output, plus a carry bit that is true when
the sum is above 3. An example, adding 2+3 to produce 5 (1+carry) is
shown in purple in (a), with inputs encoded as small-molecule signals
and outputs as fluorescent proteins. ODE chemical simulations of the
compiled genetic regulatory network show correct implementation, as
demonstrated by the examples in (b; offset vertically for visibility).
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Designing biological devices in GEC

James Brown ∗† Neil Dalchau∗ Michael Pedersen ∗‡ Andrew Phillips∗§¶

This paper presents a programming language for Genetic Engineering of Cells (GEC), initially de-
scribed in [3] and available at http://research.microsoft.com/gec. The main goal of GEC is to facilitate
the design, analysis and implementation of biological devices inside living cells. GEC builds on previous
research in the field of synthetic biology, including a standard registry of parts (http://partsregistry.org)
together with experimental techniques for combining these parts into higher-level devices. More recently,
a range of software tools have also been developed for designing and simulating biological devices, as
discussed for example in [4, 3]. The main innovation of GEC is to take the design process a step further,
by allowing biological devices to be designed with little or no knowledge of the specific parts available.
The user needs only a basic knowledge of the available part types, such as promoters, ribosome bindings
sites, protein coding regions and terminators. These basic part types can be composed in sequence or in
parallel, and the desired properties of the parts can be expressed as constraints in the GEC language.
Once the biological device has been designed, the GEC compiler automatically determines the sets of
actual parts that satisfy the design constraints. In most cases, multiple solutions are possible for a given
design. GEC compiles a given solution to a set of chemical reactions, which can then be simulated or
analyzed by the user. The solution that gives the best results can then be synthesized and put to work
in living cells.

We illustrate the approach on a simple example system (Fig. 1), based on the repressilator network of
transcriptional regulators [2]. The circuit is specified as a sequence of three transcriptional units, where
each unit consists of a promoter (prom), a ribosome binding site (rbs), a protein coding region (pcr) and
a terminator (ter). Additional constraints are specified in the form of part properties, such as the product
of a protein coding region (codes) or the negative regulation of a promoter (neg), and logical variables are
used to represent unknown proteins. A desired characteristic of the network is that the protein coding
region of one transcriptional unit must repress the promoter of the next, in a cyclic manner. When the
user compiles this design in GEC, they are presented with a set of 24 possible solutions that satisfy
the design constraints. The user can then simulate each of the solutions in order to choose the best
one. The design can be further refined by specifying that certain rates such as transcription, translation
or transcription factor binding must lie within a specified range. This helps to reduce the initial set of
possible solutions. In the case of the repressilator design, the first solution represents a condition whereby
one of the promoters is much stronger than the other two. This unwanted solution can be eliminated by
requiring that all three promoters are of similar strength, which reduces the number of possible solutions
to six.

As a case study, GEC was used to design a significantly more complex circuit (Fig. 1), in which bac-
teria were engineered to exhibit predator-prey interactions [1]. Here the design also includes interactions
between proteins together with transport reactions across the cell membrane. In order to map these
logical variables and design constraints to physical parts, the GEC system includes a database of parts,
together with a database of protein-protein interactions. Each of the parts is associated with a part iden-
tifier together with zero or more part properties. For example, the database entry (c00517→ pcr,codes(clR,
0.001)) denotes a protein coding region c0051, which codes for the protein cIR at the given transcrip-
tion rate. The entry (r00517→prom,neg(clR,1.0,0.5,0.00005),con(0.12)) denotes a promoter r0051 that is
negatively regulated by cIR and is associated with various transcription factor binding and unbinding
rates, together with the constitutive and repressed transcription rates. These rates are used to simulate
the design solutions. The database of reactions simply denotes possible protein interactions, such as
(luxR+m3OC6HSL→ {1.0} luxR-m3OC6HSL), which denotes the formation of a complex between luxR
and C6. Although such augmented databases do not yet exist on a large scale, our approaches outlines
∗Microsoft Research, 7 JJ Thomson Avenue, Cambridge CB3 0FB, UK
†Department of Plant Sciences, Downing Street, Cambridge CB2 3EA, UK
‡LFCS, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
§submitted for both oral and poster presentation
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a proposed solution for how these databases could be designed and implemented in future, with the
ultimate goal of automating the rational design of biological devices.

(a)

A B C

prom<neg(C)>; rbs; pcr<codes(A)>; ter;
prom<neg(A)>; rbs; pcr<codes(B)>; ter;
prom<neg(B)>; rbs; pcr<codes(C)>; ter

(b)

[ r0051; b0034; c0040; b0015;
r0040; b0034; c0080; b0015;
i0500; b0034; c0051; b0015]

(c)

[ r0040; b0034; c0051; b0015;
r0051; b0034; c0012; b0015;
r0011; b0034; c0040; b0015]

(d)

Q2b

Q1a

H1

r0051

Q1b

A

H2

H2Q2b

H1 H1

H1 Q1b

H2

Q2a

H2

r0051

ccdB

r0051

ccdB

PreyPredator
c1
[ r0051:prom; rbs; pcr<codes(Q2b)>
; rbs; pcr<codes(Q1a)>; ter
; prom<pos(Q2b-H2)>; rbs; pcr<codes(A)>; ter
; r0051:prom; rbs; pcr<codes(ccdB)>; ter
| Q1a ~-> H1 | Q2b + H2 <-> Q2b-H2
| A ~ccdB ->
]
||c2
[ prom<pos(H1-Q1b)>; rbs; pcr<codes(ccdB)>; ter
; r0051:prom; rbs; pcr<codes(Q1b)>
; rbs; pcr<codes(Q2a)>; ter
| Q2a ~-> H2 | H1 + Q1b <-> H1-Q1b
]
||c1[H1] -> H1 | H1 -> c2[H1]
| c2[H2] -> H2 | H2 -> c1[H2]

(e)

[r0051; b0034; c0062; b0034; c0078; b0015;
runknown2; b0034; cunknown4; b0015;
r0051; b0034; cunknown3; b0015]
[runknown2; b0034; cunknown3; b0015;
r0051;b0034;c0061;b0034;c0079;b0015]

Figure 1: Designing biological devices in GEC. (a) GEC code for the repressilator network [2], together
with its graphical representation, expressed in terms of part types and logical variables. Note that none of
the parts are specified explicitly. The design yields a large number of possible solutions (b). Simulation of
the first solution in GEC. The solution does not exhibit the desired oscillations and is not a candidate for
synthesis. (c) Simulation of an alternative solution in GEC. The solution exhibits the desired oscillations
and is a candidate for synthesis. (d) GEC code for a predator-prey system [1], together with its graphical
representation. (e) Simulation of one of the solutions in GEC, which gives rise to oscillatory behavior.
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To effectively build from prior work and best practices, synthetic biology researchers need standardized 
descriptions of biological parts. The common approach of storing data about biological parts in a spread sheet is 
convenient for a small laboratory, but it is too ambiguous to establish an efficient engineering pipeline in synthetic 
biology. Descriptions of parts using an unambiguous language can be leveraged by software that help researchers 
make appropriate design decisions. To facilitate the use of such descriptions by software tools, we have created a 
synthetic biology knowledge base. This resource uses the Synthetic Biology Open Language Semantic (SBOL 
semantic) as its organizing structure. We provide information retrieval services via a simple software library 
(libSBOL) and a standard query language interface. Currently, we have populated the knowledge base with 
information from the Registry of Standard Biological Parts [1], and we have made it available for public use. In this 
abstract we describe the knowledge base structure, data access capabilities, and the implications of our work for 
automating synthetic biology design. 

Our aim for the design of the knowledge base is to represent a rough consensus of the semantics of synthetic 
biology theory and practice. We use SBOL Semantic as the information model of core synthetic biology concepts 
and their relationships. The structure of the SBOL Semantic core module reflects the elements and layout of the 
Registry of Standard Biological Parts, the widely adopted public repository of parts. We have developed this model 
with the help of collaborators from the Synthetic Biology Data Exchange Group, a community interested in 
improving electronic information exchange in synthetic biology. The current iteration of the information model 
was developed using an open process for the evolution and standardization of data models [2]. The new work 
builds on the Provisional BioBrick Language (PoBoL) [3, 4]. As part of the collaboration to create the Synthetic 
Biology Open Language (SBOL), SBOL semantic is one of three components, along with SBOL Visual [5] and SBOL 
Script [6]. Each sub-language serves an orthogonal purpose in the exchange of synthetic biology information. This 
approach in the development of SBOL semantic aims to improve its adoption for sharing standardized biological 
part information across computer networks. 

The main concepts represented by the knowledge base are a set of Classes and a sub-class hierarchy, as shown in 
Table 1. The Class names used in SBOL semantic are intended as the most general level terminology of distinct 
categories of common information objects used in the synthetic biology engineering process (Table 1). We plan to 
further expand the Class hierarchy to provide a richer vocabulary for the description of synthetic biology 
constructs.  

Sample Aliquot of Cells or DNA material in a container  

Cell Basic functional unit of life  

Physical DNA Continuous DNA molecule  

 Plasmid Extra chromosomal DNA capable of replicating independently from chromosomal DNA  

Part A standardized building block for synthetic biology  

 Vector Backbone A special Part into which the construct of interest is inserted to be transfected into Cells  

Assembly Standard Set of Sequence Features which designate a physical composition standard  

Sequence Annotation Position and direction describing the region for a Sequence Feature of a Part  

Sequence Feature Description of primary Annotations of nucleic acid sequence 

 BioBrick Scar Sequence between adjacent Parts, created as a byproduct of Assembly Standard 10  

 Terminator Transcriptional terminator sequence, example of a type of Sequence Ontology term  

 
Table 1. Top level Class (bold) and example sub-class (regular face) SBOL semantic terminology with a simplified 
definition for clarity. 
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The SBOL semantic structure provides information about instances of each Class. All standard biological parts 
belong to the generic category of the Class Part and share the same kinds of properties, such as having a DNA 
sequence, a text description, and relationships to members of other Classes. For example, to create a link between 
information about a Part (B0015) to its DNA sequence composition, a Sequence Annotation relates the position 
and strand information to the associated Sequence Features, such as a transcriptional Terminator or BioBrick Scar 
(Figure 1). Additionally, we will extend the core SBOL semantic model to encompass the rich Sequence Feature 
categorization provided by the Sequence Ontology [7]. The defined SBOL semantic framework explicitly captures 
the information and the structure necessary to create a knowledgebase of Parts for biological engineering. 

We have expressed SBOL semantic 
using RDF [8], a general-purpose 
language for representing 
information on the Semantic Web.  
This standard encoding allows the 
use of generic RDF tools to read, 
manipulate, and interpret SBOL data 
records.  We relied on RDFLib [9], 
one such tool, to develop libSBOL, 
our Python software library. Then, 
we used libSBOL to annotate the 
>3,500 records we obtained from the 
Registry of Standard Biological Parts 

with SBOL semantic structure.  The SBOL encoded data, stored in Sesame database [10], is accessible by local or 
remote query using SPARQL, a W3C recommended query language for RDF data. For example, we used libSBOL to 
populate SBOLr [11], our clone of the JBEI Registry [12], though which we provide a web interface to the 
information contained in this knowledge base of biological parts.  

Reuse of components in synthetic biology research is one of the key attributes of the engineering process which 
makes possible the construction of new systems with increased complexity. The RDF based SBOL framework allows 
us to capture the richness of semantically structured descriptions and to continue to incorporate new information 
needed for design in synthetic biology. Automation of design promises to make building biological machines more 
efficient.  Finding parts that meet the specifications of designs is a critical aspect of automation of the engineering 
process. Leveraging Semantic Web tools to perform information retrieval can fulfill this need and offer additional 
benefits such as consistency checking through automated inference. Adopting these capabilities to biological 
system design should allow engineers to use previously created solutions and apply them to solve novel problems. 
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Figure 
1. Classes (black rectangles) describe types (open faced arrows, colored 
by type) of Individual data elements (yellow rounded rectangles) and the 
composition relationships between them (closed faced arrows). 
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Matching the output of one circuit with the input of the next circuit requires the ability to dial-in promoters 
with the desired output characteristics. Currently, there are no available models that reliably predict the 
strength of bacterial promoters from the sequence of the promoter. Using the 60 natural promoters 
recognized by σE, an alternative sigma (σ) factor in E. coli, as a test bed, we have made significant 
progress in predicting the strength of these promoters from their sequence, as well as identifying the 
sequence properties that distinguish between active and weak/inactive promoters. We believe our 
approach can be generalized to promoters recognized by other σs. 
 
Bacterial promoters are constructed of multiple poorly conserved motifs separated by variable length 
spacers (Fig. 1), making them difficult to predict accurately. In order to assess the contribution of each 
motif to promoter strength we divided the sequence of each promoter into 7 regions (modules), based on 
their sequence conservation and interactions with RNA polymerase (RNAP) (Fig. 1). We then used 3 
approaches that reflected the binding requirements with RNAP to score each of these modules. (1) 
Position weight matrices (PWMs) that score aligned motifs and assume each nucleotide position 
contributes independently and additively to protein-DNA binding energy. PWMs have been well-
documented in correlating protein-DNA binding energies of transcription factors with DNA sequence. 
Here we used PWMs to score the core promoter motifs that are predominantly recognized by the σ 
subunit of RNA polymerase (RNAP) (Fig. 1). (2) Upstream regions of promoters often contain tracts of As 
and Ts that are required to bind the α subunits of RNAP (Fig. 1). We scored these sequences using 
frequency counts of 3 nt A- and T-tracts to mimic the binding requirements of these subunits. (3) The 
variable locations of the core -35, -10 and +1 promoter motifs affect promoter strength. We employed a 
combined penalty term for suboptimal placement of these motifs (Fig. 1). Each promoter was then scored 
by summing the scores of each module to generate a total promoter score. Finally, promoter strength was 
measured in vivo using promoters fused to GFP in strains expressing basal levels of σE. These are 
stringent assay conditions with low levels of σE, consequently, only 18 of the 60 promoters in our library 
are active.   
 
Our best model for predicting the strength of active promoters was comprised of cumulative scores of just 
select modules: 3 nt A- and T-tract counts in sequences upstream of the core promoter, PWMs of the -35, 
-10 and start motifs, and spacer penalties for suboptimal placement of the -35, -10 and start motifs. 
Scores of each of these modules positively correlated with promoter strength. In contrast, the remaining 
modules negatively correlated with promoter strength; consequently, scoring promoters by summing the 
scores of all modules provided no correlation with promoter strength. We optimized our best model by 
removing outlier promoters based on their high residuals and leverage properties; most of these outliers 
contained anomalously low scores in one module, suggesting unusual sequence characteristics. This 
optimized model generated strong correlations with promoter strength (R = 0.88).  Finally, we tested our 
model using 10-fold cross-validation: this generated validated promoter scores that correlated well with 
promoter strength (R = 0.82), demonstrating good predictive utility. These results demonstrate that 
promoter strength can be described using PWMs of select core promoters sequences and counts of A- 
and T-tracts within promoter upstream regions. In addition, our best model was constructed only from 
sequences of promoters that were active under our stringent assay conditions, rather than using all 



promoter sequences that are active under less stringent conditions. This demonstrates that only strong 
promoters should be used to construct accurate promoter strength models. 
 
Many models that predict promoters make many false predictions, reflecting their poor ability to 
discriminate between functional and non-functional sequences. We tested the specificity of our promoter 
strength model by its ability to accurately distinguish between the 18 active promoters and the remaining 
weak/inactive promoters in our dataset. Using the model to generate a total promoter score for the 
inactive promoters poorly distinguished them from active promoters, since their scores overlapped with 
those of active promoters. However, most of the inactive promoters contained scores for at least one 
module that were much lower than the scores of the same module within the active promoters. 
Consequently, applying a threshold of lowest score for each module in the active promoters successfully 
identified 95% of the inactive promoters with lower scoring modules. This indicates that there is a 
minimum requirement of each promoter module for promoter function. Also, whilst predicting promoter 
strength only required scores of select modules, additional modules such as the discriminator and initial 
transcribed region were important for predicting promoter function.  
 
Our findings have significant implications for accurate modeling of promoter sequences. First, promoter 
strength can be predicted using select combinations of PWMs and A-/T-tract counts. This suggests that it 
will be possible to forward-engineer promoters of specific strengths based on a common backbone 
sequence. Second, a two-step approach should be used for accurate promoter prediction: (1) using all 
promoter modules with minimum score cutoffs to predict functional promoters; and (2) using select 
promoter modules to score promoter strength. Finally, it is highly likely that these findings will be 
applicable to other promoters recognized by alternative σs that also recognize relatively well-conserved 
sequences. We are currently testing this. 
 

 
Figure 1. Structure of bacterial promoters. The figure illustrates positions of conserved motifs 
comprising the core and upstream regions of σE promoters, and the different models used to score each 
motif. PWM, position weight matrix; +1 is the site of transcription initiation; +1 motif is comprised of -1 and 
+1 position. 



Resolving Variable Dependencies in the MPDE-SSA Algorithm

Abiezer Tejeda, Chris Winstead, Eduardo Monzon, Chris Myers, Curtis Madsen
Utah State University

In this work, we propose some enhancements to a stochastic simulation method, called Marginal Proba-
bility Density Evolution (MPDE), that the authors previously developed [8]. The new approach introduces
a Linear Gaussian Network (LGN) approximation during brief intervals of the stochastic simulation. This
approach can be used to establish statistical independence among species in order to create modular models.
The approach can also be used to verify independence assumptions in circuits that are synthesized from mod-
ular models. Additionally, when the LGN approximation is allowed, Principal Component Analysis (PCA)
can be used to improve the accuracy of the MPDE algorithm. Further details of the proposed methods are
described below.

Synthetic biology is an emerging science that intends to develop new ways to engineer biological systems.
The subfield of genetic circuits consists of methods and tools for designing functional behavior in organisms
by inserting exogenous genetic instructions. One major area of research for genetic circuits is to analyze
and predict the behavior of synthetic gene networks by means of computational tools [1]. However, the
randomness of these circuits makes in silico analysis cumbersome [4]. Moreover, due to complex protein
interactions and stochastic events, it is difficult to establish truly modular functional models for genetic
parts.

Mathematical models have been created to characterize, predict, and modify the behavior of genetically
engineered networks. Chemical reaction models can be transformed into a set of first order differential
equations (ODEs). Although ODE models are generally amenable to modular descriptions, they wrongly
assume that a system’s chemical species vary deterministically and continuously, which often results in
erroneous predictions [5]. Therefore, ODE models can make incorrect predictions when applied to highly
stochastic systems, thus requiring stochastic analysis for accurate and robust designs of genetic circuits.

To arrive at a modular approach to stochastic genetic circuits, some researchers propose using probability-
transfer models [2]. Probabilistic models show some promise for modular synthesis strategies in the forward
design of genetic circuits. The authors recently demonstrated a modular probabilistic approach for synthe-
sizing a “quorum trigger” circuit [6]. In this example, the probabilistic model provided three main benefits:
(1) Intuitive abstract behavioral models of the circuit’s genetic components; (2) A coherent procedure for
forward-design based on modular logic parts; and (3) A framework for estimating the reliability of the
synthesized function.

Although abstract probabilistic models can be useful for design, there remains a gap between high-
level modular models and low-level stochastic reaction-network models. Modular models implicitly assume
functional independence among a circuit’s components. Current tools provide little aid for establishing that
independence a-priori, or for verifying independence during simulation. To help fill this gap, the authors
previously devised the MPDE method, which tracks the marginal statistical evolution of species in a reaction
system. Whereas traditional Stochastic Simulation Algorithms (SSAs) generate a scalar value for each species
at each time increment, the MPDE method generates the marginal probability density function for each
species in the system. The goal of this approach is to represent the system’s functional behavior using an
intuitive signal-plus-noise model, while staying faithful to the physics of the reaction network. Researchers
frequently use some form of mean-plus-deviation representation when publishing SSA results, but there is
currently no generally applicable procedure for abstracting species’ statistics in this format.

In its original presentation, the MPDE method relied on the assumption that, during a brief time-interval,
all species variations are pair-wise conditionally independent, given the system’s total state. This assumption
is not always accurate. In fact, some variables may be highly dependent on each other, which may completely
invalidate the simulation results. Previous accounts of the MPDE method also offered no means of testing
for dependencies. In this work, we identify some approximate but useful procedures for testing and resolving
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variable dependencies in MPDE simulations.
Most genetic circuits contain some pairs of highly correlated species. In many cases, the most highly-

dependent variables can be identified a-priori by calculating conservation constraints in the reaction-network
model. For the remaining variables, it is helpful to approximate some (or all) of the system’s species
as Gaussian-distributed variables. Then, during a brief time-interval, the system may be treated as a
LGN. Variable dependencies appear as significant non-zero entries in an LGN’s information matrix, which
is computed as the pseudo-inverse of the covariance matrix. The information matrix can be computed
periodically during simulation, and can be used to spot dependencies in the reaction system (and hence to
flag violations of modular independence assumptions).

In addition to these solutions, Principal Component Analysis (PCA) may be used to automatically resolve
minor dependencies within the MPDE. PCA is an algorithm that performs a decorrelating transformation
and dimensionality reduction on a correlated data set [7, 3]. The PCA approach corrects for simulation errors
caused by small incremental dependencies in the system’s species. By using PCA together with conservation
constraints, the enhanced MPDE algorithm delivers a more trustworthy signal-plus-noise picture of the
system’s behavior.

Utah State University University of Utah
Electrical and Computer Engineering Electrical and Computer Engineering
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According to the ”MIT Registry of Standard Biological Parts”, standard parts are DNA
traits associated with well-defined functions in transcription and translation (e.g. promoters,
ribosome binding sites, coding regions, terminators). As in an electrical circuit basic parts and
devices can be connected to each other thanks to the exchange of the electric current, biological
parts are ”composable” if they share the same input/output namely one or more fluxes of
molecules referred to as common signal carriers [4]. They represent the biological counterpart
of the electrons and permit to assemble composable parts into biological devices–made of one
or more transcription units–and devices into genetic circuits.

Following these notions, we developed a computational tool for the visual design of synthetic
gene circuits by means of standard composable parts and pools of signal carriers [9].

In our model, gene expression requires at least five kinds of signal carriers: RNA polymerases,
ribosomes, transcription factors, small RNAs and chemicals. The flux of each of these types
of molecules is a quantifiable biological signal that allows exchange of information between
parts, devices and the cell environment. Both parts and pools are modeled independently
by the ordinary differential equations (ODE) formalism and generated upon specification of
the corresponding kinetic parameter values and internal structure. Since our tool has been
integrated into the software ProMoT (Process Modeling Tool [10]), it permits to build genetic
circuits in a ”drag and drop” way–as in electrical engineering–by placing biological parts and
pools on the ProMoT canvas and connecting them through ”wires” that enable flow of signal
carriers.

More recently, we extended our tool to the automatic design of digital synthetic gene circuits.
Here, standard biological parts are gathered into biological Boolean gates whose logic behavior
arises from the action of proteins, small RNAs, and chemicals on their promoters and ribosome
binding sites (see for instance [2, 12]). Instead of applying a brute-force approach that requires to
run an optimization algorithm both on the structure and on the kinetic parameter values of the
network–as pointed out by François and Hakim [5] and implemented in the computational tools
OptCircuit [3] and Genetdes [11]–our tool implements the Karnaugh map method to convert
a truth table, which fully specifies input–output relations, into Boolean formulas (conjunctive
and disjunctive normal forms) that can be directly translated into circuits organized in three
layers of gates. Hence, the circuit structure is derived without the need for any optimization
procedure.

The tool utilizes a library of well-working Boolean gates whose kinetic parameters have been
set to default values taken from literature and tuned via simulations. A two-input AND gate,
for instance, is realized in several possible configurations, depending on the different locations
it can take inside a circuit: two activators binding cooperatively to the promoter [2]; two small
RNAs modifying possible hairpin structures on the RBS; two chemicals activating a tandem
riboswitch (similar to the structure proposed by Win and Smolke [12]); a small RNA and a
chemical acting independently on the RBS; an activator binding the promoter and a chemical
or a small RNA modifying the RBS. Most of these cofigurations are new and their working in

vivo still requires experimental confirmation. Other possible, more complex AND gate designs
(like in [1]) have not been considered even though the tool might be easily extended to include
them too.

Overall, the only required input is a truth table. For each truth table the tool automatically
generates several possible circuit schemes which are ranked according to a complexity score
proportional to the number of different regulatory factors present in the network.
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The solution chosen by the user is finally encoded into an MDL (Model Definition Lan-
guage [6]) file and can be visualized inside the ProMoT graphic user interface. Here, moreover,
parameter values of every single part and pool can be modified and the whole circuit can be
exported into formats suitable for both stochastic and deterministic simulations (e.g. Matlab,
SBML [7]).

We have to notice that, at present, the wet-lab implementation of the most intricate networks
computed by the tool is not possible. In fact, in some cases, too many different transcription
factors are required whereas just a handful of them is currently used in synthetic biology.
Moreover, controls at translation level like riboswitches and ribozymes [8], which drastically
simplify a circuit scheme, are not yet massively engineered.

Nevertheless, with the choice of parameter values and Boolean gate configurations we made,
simulations of circuits with up to four inputs show a faithful and unequivocal truth table
representation. Furthermore, results of stochastic simulations highlight that the digital circuits
designed by our tool are considerably robust to the intrinsic noise: this seems to confirm the
validity of our electronics-based approach.
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Design of in vitro synthetic gene circuits
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The functionalities of every living organism are wired in the biochemical interactions
existing among proteins, nucleic acids and all the other molecules that constitute life’s
building blocks. Understanding how to embed any function in this “hardware of life” via
“molecular programming” is an exciting and challenging task for modern bioengineers and
synthetic biologists. Programming molecules is indeed possible with very high precision
when reactions are run in vitro, in a controlled environment with few components. The
structural properties of nucleic acids make them ideal programmable molecules to perform
molecular computation, construct of nano-devices and feedback systems.
Synthetic in vitro genetic circuits, developed at Caltech in the Winfree laboratory, are
composed solely of nucleic acids and few protein species. Despite their simplicity, they can
be used as a tool kit to design systems embedding important biological functionalities,
such as self repressing or self activating modules, toggle switches and oscillators. We
operate in this simple “molecular programming environment” to investigate bio-molecular
design principles.
First of all we will demonstrate, numerically and experimentally, how the design of specific
feedback interconnections can generate automatic regulation of output flow in a
two-component in vitro genetic circuit. Flow control is a fundamental feature for the
correct performance of large scale networks, of which familiar examples are the Internet,
power grids and pipe networks. In the biological world, complex cellular pathways rely as
heavily on a regulated flow of nucleic acids, transcription factors and other metabolites.
We propose two new designs to regulate and match the RNA production of two in vitro

transcriptional circuits. In particular, these architectures are based on self inhibition and
cross activation mechanisms that can dynamically change the fraction of actively
transcribing DNA strands and correctly respond to changes in the chemical environment.
The second challenge we will consider is modularity. Since in vitro genetic circuits are a
powerful benchmark to test new biochemical circuitry designs, it is fundamental to
understand how to interconnect several different transcriptional modules in a large
network, preserving their functionality. Insulation blocks are crucial to this purpose. Simple
direct connection of different synthetic in vitro devices through input and output signaling
molecules can result in heavy retroactivity effects that destroy the original desired behavior
of each module. For example, we have observed that when a synthetic oscillator is used to
drive a downstream nano-device (for instance, DNA-molecular tweezers or beacons), even a
small amount of such “load” can alter the reference oscillatory signal. To overcome this
problem, we designed a transcription-based insulation stage that decouples the core
oscillator from its load. Experimental results show that the addition of such layer allows us
to decrease the source signal deterioration when connecting larger amounts of downstream
devices to the biochemical oscillator.
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Fan-out Considerations in Gene Regulatory Networks 
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This abstract is for both a poster and oral presentations. 

Engineering relies on modular composition that is the ability to combine functional units with the knowledge that 

the intrinsic property of each module is unaffected to a large degree by the composition. In biology we are less 

clear on the notion of a modular component, or at least biology has multiple definitions depending on application 

and context. Here we will define a module as a self-contained functional unit whose intrinsic properties are 

independent of the surrounding milieu. We will be concerned with the design of modular synthetic components 

and avoid the question of modularity in natural evolved systems. 

In electronic engineering there exist guidelines and published constraints on how many electrical modules can be 

driven from a source. For example, one rule of thumb for analog circuits suggests that the impedance at the input 

should be ten times the impedance at the driving circuit. In digital circuits, such as TTL circuits, manufactures will 

quote the fan-out and fan-in for a given electrical module. The fan-out indicates how many downstream logic gates 

can be connected to a given output. Exceeding these limits will either cause signal distortion in analog circuits or 

potentially, circuit failure in digital circuits.  

In synthetic biology one could imagine the development of similar criteria for connecting two biological modules 

together. Here we introduce the notion of fan-out for a genetic circuit. We will define the fan-out of a genetic 

circuit as the maximum number of downstream promoters that can be driven from an upstream circuit signal 

without significant time-delay or signal attenuation.  We will show that the fan-out can be estimated by using gene 

expression noise, precisely its autocorrelation [1], and during the estimation procedure, systems retroactivity can 

also be measured.  This fan-out/retroactivity estimation can be applied under quite general module interface 

conditions.  Although our analysis is focused on genetic networks, the principles apply equally to protein networks. 

When two synthetic gene circuits are connected, transcription factors are used to connect the two.  The reaction 

processes involving the transcription factors (TFs) such as TF transcription, translation, degradation, and promoter-

binding/unbinding, will be called module interface processes (MIPs). 

We consider the case that two modules are connected (Fig.1A). The output of the upstream module is represented 

by 𝑋 and the input of the downstream by 

𝑋-specific promoters. Figure1A represents 

one of the simple MIP. The dynamics of 𝑋 

has been known to slow down due to its 

downstream connection and the slow-

down was defined by retroactivity [2]. We 

explain the slow-down by mapping the 

MIP (Fig.1A and B) to an RC (Resistor-

Capacitor) circuit (Fig.1C). When the 

downstream module is not connected, the 

Fig.1 
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corresponding MIP can be mapped to an RC-circuit with a capacitance 𝐶0. With the connection, an extra 

capacitance 𝐶 ′  is shown to be connected in parallel to 𝐶0 (Fig.1C). The total capacitance becomes the sum of the 

two capacitances: 𝐶𝑇 = 𝐶0 + 𝐶′. The increase in the capacitance means that the circuit responds more slowly 

when the downstream component is connected, specifically the response time becomes:  𝜏𝑃𝑇
= 𝑅𝐶𝑇 = 𝑅(𝐶0 +

𝐶 ′), with 𝑃𝑇  the total number of the downstream 𝑋-specific promoters (Fig.1C).  We investigate how the response 

time is related to the total number of the downstream promoters 𝑃𝑇 . Interestingly, 𝐶′ is shown to be proportional 

to 𝑃𝑇 : 𝐶 ′ = 𝑃𝑇𝐶1 (Fig. 1 Black Box). This proportionality relationship becomes very useful for proposing the 

experimental estimation method for fan-out.  

We define the gene circuit fan-out by the maximum number of promoters that the output can drive.  To quantify 

the fan-out, we consider the frequency response of the MIP, which is shown to act as a low-pass filter with a cut-

off frequency 𝜔𝑐  given by 𝜏𝑃𝑇
−1.  Consider that the upstream module functions as a synthetic oscillator.  There will 

be a practical upper limit in the oscillator’s frequency: maximum operational frequency 𝜔𝑚𝑎𝑥 .  When the cut-off 

frequency (Fig. 2B) is larger than 𝜔𝑚𝑎𝑥  the oscillator output will be operated in a predictable manner without any 

significant signal loss. As the number of the downstream promoter increases (Fig.2C) the cut-off frequency 

decreases. When the cut-off frequency matches with 𝜔𝑚𝑎𝑥 , the corresponding 𝑃𝑇  is defined as the fan-out: 

𝐹𝜔𝑚𝑎𝑥
=  

𝐶

𝐶1
 

1/𝜏0

𝜔𝑚𝑎𝑥
− 1 . 

This fan-out equation has two unknown parameters: 𝐶/𝐶1 and 𝜏0.  These can be experimentally estimated by 

performing two independent experiments with and without any downstream 𝑋-specific promoter.  In each 

experiment we measure the corresponding response time: 𝜏0 and 𝜏𝑃𝑇
(by using gene expression noise [1]). If the 

promoters are placed in plasmids, the copy number of the plasmids can be roughly known depending on what type 

of the origin of replication is used, and thus the copy number of the promoters 𝑃𝑇  can be known a priori. From the 

known 𝑃𝑇  and the estimated 𝜏0 and 𝜏𝑃𝑇
, we can estimate the two unknown parameters.      

The above fan-out equation 𝐹𝜔𝑚𝑎𝑥
 was derived from the simple MIP described in Fig.1A. The same or similar fan-

out functions can be shown to be derived for the more general cases that the TFs are oligomers, are tagged for fast 

degradation, are auto-regulated, and regulate multiple downstream promoters having different affinities. This 

means that the fan-out can be estimated exactly in the same way as in the case shown in Fig.1A, by measuring the 

time constant with and without any downstream promoters.  This measurement can be achieved from gene 

expression noise, specifically by estimating 

its autocorrelation function [1]. 

This fan-out study provides a way for 

quantifying the level of modularity in gene 

regulatory circuits and helps characterize 

and design the module interface that is 

required to be satisfied for the modular 

construction of gene circuits.        

[1] Weinberger LS, Dar RD, Simpson ML 

(2008) Nat Genet 40:466—470.  

[2] Del Vecchio D, Ninfa AJ, Sontag ED 

(2008) Mol Syst Biol 4:161. 
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Biology presents us with an array of design principles. From studies of both simple and more 
complex systems, we understand many of the fundamental principles of how Nature works. We 
are interested in using the foundations of biology to engineer cells in a logical and predictable 
way to perform certain functions. In doing so, we learn more about the fundamentals of 
biological design as well as engineer useful devices with myriad applications. For example, we 
are interested in building cells that can perform specific tasks, such as counting events, 
measuring time and remembering past events. Moreover, we design and construct proteins 
and cells with predictable biological properties that serve as potential therapeutics, cell-based 
sensors and factories for generating bio-energy, high value commodities and bio-remediation. In 
doing so, we progress towards the overarching goal of Synthetic Biology – to make the 
engineering of biology more predictable. 

 
 
 
 
 
 
 
 

Programming cells as therapeutics by modular design 
Chris Anderson, Berkeley 

 
Synthetic biology is an emerging approach to genetic engineering where complex dynamic 
systems are built ground-up from well-characterized cellular chasses and functional parts.  This 
approach presents solutions to some of today's most challenging problems in healthcare, 
chemical and materials production, bioremediation, and bioenergy. 
Particularly appealing is the use of live bacteria as therapeutic agents for the treatment of cancer.  
We use  modular design to engineer bacteria that can be safely injected into the bloodstream, 
localize to and invade cancer cells within solid tumors, and kill them.  The challenge of 
constructing such agents is determining how to break down complicated, unnatural biological 
behaviors into simpler modular devices that can be constructed from known genetic components. 
 Beyond the conceptual challenge, the ability to efficiently construct large systems requires the 
development of new experimental and fabrication approaches including automated DNA 
assembly and BioCAD tools.  I will describe the therapeutic bacteria system as well as the tools 
and experimental approaches spawned from these studies. 
 
 
 
 
 



Feedback and Control in Biological Circuit Design 
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Biological systems make use of feedback in an extraordinary number of ways, on scales ranging 
from molecules to cells to organisms to ecosystems.  In this talk I will discuss the use of 
concepts from control and dynamical systems in the analysis and design of biological feedback 
circuits at the molecular level.  After a brief survey of relevant concepts from synthetic biology, I 
will present some recent results that combine modeling, identification, design and experimental 
implementation of biological feedback circuits.  These results include the use of intrinsic noise 
for system identification in transcriptional regulatory networks, development of an in vitro 
circuit for regulating the rates of transcription of two independent genetic sequences, and design 
of dynamics of for an in vivo oscillator using transcriptional delay.  Using these results as 
examples, I will discuss some of the open problems and research challenges in the area feedback 
control using biological circuits. 
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PREDICTABLY PROFITABLE PATHS IN METABOLIC NETWORKS 
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Metabolic pathway analysis is a powerful tool to identify targets for the rational redesign of 
complex metabolic networks. Pathway analysis is especially useful in optimizing metabolic 
engineering and synthetic biology objectives such as production of biofuels [1] and therapeutic 
proteins [2]. One approach to optimization is to improve the catalytic activity of enzymes or 
otherwise relieve bottlenecks in the pathway of interest.  
 
In this context, two types of enzymatic reactions are potential engineering targets: the reaction 
that is the limiting step in the pathway and the reaction that is inflexible. The limiting reaction is 
the reaction with the lowest flux capacity in the pathway. The inflexible reaction cannot adjust its 
flux to support a modified flux distribution needed to meet the engineering objective. Such a 
reaction can be characterized by a small range of observed fluxes across different conditions. To 
identify pathways based on these two types of reactions, we present a new algorithm, Predictably 
Profitable Path. The algorithm considers both flux bottleneck and range to search for the most 
predictably profitable path in a metabolic network. 
 
In general terms, a predictably profitable path is defined as the conservatively profitable path that 
is most predictable. The predictability and profitability of a path can be defined in a number of 
different ways, because these properties depend on the objective of pathway analysis. For 
analysis of flux distributions in the metabolic network, the most profitable path from a source 
metabolite to the destination metabolite would be the path that guarantees a minimum flux. The 
predictable path is defined as the path having a narrow range of flux capacity. Such a path will 
help in identification of inflexible reactions. 
 
The Predictably Profitable Path algorithm uses graph-based searches. In the graph 
representation, metabolites are represented as nodes and reactions are represented as weighted 
edges. There are two types of edge weights: mean and range. Both types of weights are 
calculated from measured or estimated flux distributions. The mean weight is the nominal flux 
value through the corresponding reaction at a defined metabolic state. The range weight is 
derived from minimal and maximal flux capacity calculations for the metabolic network. The 
Predictably Profitable Path algorithm consists of two steps; removal of non-profitable edges in 
the network to guarantee a minimum flux from source metabolite to destination metabolite and 
identification of predictable path in the reduced network. 
 
The Predictably Profitable Path algorithm first prunes the network by removing non-profitable 
edges and then identifies the most predictable path. The edge that has flux capacity below a 
defined threshold is non-profitable edge. The threshold value is selected such that a maximum 
lower value of flux can be guaranteed. This value can be calculated by assigning the lower bound 
of flux values as weights to the edges and then identifying the weight of best bottleneck edge in 
all paths from the source metabolite to destination metabolite. After pruning the network, edges 
are assigned weights equal to the range of flux values i.e. difference of maximum and minimum 



flux for a reaction. Favored Path algorithm [4] is applied to the network favoring the minimum 
weights to obtain the predictably profitable path. 
 
The algorithm is based on graph search approach having polynomial runtime. Thus, it is very 
efficient for large complex networks as compared to the enumeration based techniques such as 
elementary flux mode analysis. The algorithm is generic because by changing the weights of 
edges different analysis objective can be defined; for example, a weighting scheme of Gibb’s 
free energy change will define the objective of identification of pathways that are predictably 
thermodynamically more feasible. 
 
We have applied the algorithm to identify pathways in Escherichia coli for ethanol production 
from glucose [1] under anaerobic conditions. Our algorithm was able to identify the path that 
was engineered to maximize the production of ethanol using the flux distribution data of the 
network. 
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Robust inference of biological Bayesian networks
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Rapid advancements in gene microarray technologies have led to the availability of large amounts of gene expres-
sion datasets in public repositories. By using microarrays to measure the relative expression of genes over a period
of time, biologists hope to discover how different genes interact with each other in order to give rise to a specific
biological phenotype. These interactions can be further exploited to predict the behavior of the network under exter-
nal perturbations, which finds applications to drug discovery. However, reverse engineering of such gene regulatory
networks from the time-series microarray data has remained a challenging task so far. Methods such as Bayesian
networks, neural networks, and clustering have been used in literature to infer gene interactions [1]. However, the
scarcity of data and inherent noise in microarray technologies has impeded the performance of these techniques. In
this paper, we propose algorithms inspired by communications theory to enhance the performance of algorithms for
Bayesian network (BN) inference by improving the quantization of the time-series microarray data.

Bayesian networks is one of the most widely used techniques to infer the structure of regulatory networks in
practice. BN is formally defined as< G,Θ >, whereG is a directed acyclic graph (DAG) that represents the
conditional dependence between the gene expression variables andΘ is the set of parameters that annotates the DAG
by encoding the joint probability distribution of variables as a product of conditional probabilities. Finding the best
G andΘ is NP-hard. In practice, a fitness function is assigned to each network and heuristics are used to search for
a network with the best fitness score [2]. The fitness scores are usually — but not necessarily — defined asP (D|G),
which is a measure of how likely it is that a candidate graph will generate the original dataD.

BN models should be reliable to be of use in predicting system performance. The first step in BN inference
is quantization of the continuous microarray data. However, there is currently no consensus on finding the exact
boundaries during the quantization step. Since the microarray data already has high levels of intrinsic noise, this
may render the whole process of BN inference unstable. Note that increasing the number of quantization intervals
does not alleviate the problem since the required amount of data for inference has a super-exponential dependence on
the number of quantization intervals, and currently available microarray technologies cannot support this huge data
demand. Overall, the biological BN should be inferred in a manner such that the intrinsic noise in the microarray data
does not significantly alter the structure of the graph.

Quantization of gene microarray data is usually based on either interval quantization or quantile quantization.
Quantization algorithms based on clustering algorithms and threshold optimization [3] have also been proposed in
literature. A common shortcoming of all these methods is that they ignore that the microarray data is inherently a
time series. Every sample in a time series has a strong correlation with its neighboring samples, but the common
quantization methods completely remove this information from their algorithm chain. In this paper, we investigate
methods inspired by communications theory to recover and use the lost time-series information in BN inference and
present results to illustrate their advantages in robust BN inference.

For intuition, assume that genes “transmit” information about their activity via the microarray “channel” by mod-
ulating the intensity of their activity. If gene activity increases, the microarray is expected to record a higher value,
and vice versa. In other words, the process is analogous to pulse amplitude modulation (PAM) and demodulation via
a highly noisy “channel”. In practice, modern PAM decoders use a low-pass filter at the front-end to remove unnatural
spikes from the time-series data. A modern smoother, like the Loess algorithm, can be used to implement the low-pass
filter. In the next step, the time-series data is quantized according to the noise model of the channel. The received sam-
ples are assessed to approximate the statistical likelihood of being “0” or “1”, i.e.,P (d = “0”|x) andP (d = “1”|x),
whered andx are the quantized transmitted data and the noisy received data, respectively. If the likelihood of being
“0” is higher than likelihood of being “1”, the sample is quantized to “0” and vice versa. The likelihood term can be
expanded using Bayes’ rule:
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Figure 1: (a) time series from SOS DNA repair dataset, (b) network inferred by traditional quantization, and (c)
network inferred by the enhanced quantization method. The true and false edges are solid and dotted, respectively.

P (d = “1”|x) =
P (x|d = “1”)

P (x)
P (d = “1” ) ∝ P (x|d = “1”)P (d = “1”) (1)

P (x) is just a scaling factor for an instance of the received time series, and can be ignored in the decision making
process. TheP (x|d = “1”) term is calculated based on the noise model that is assumed for the channel. If the
decision making is solely based on this term and the channel is assumed to have additive white noise, then the decision
making is equivalent to interval quantization. The second term is the probability that the transmitter has sent “1” in
this sample. This probability is either knowna priori or can be approximated by analyzing the neighborhood of this
sample. If the neighborhood of a sample is clearly all “1”, the probability that this sample is also “1” is also higher.
So, the decoder may assign “1” to a sample, even though the value of this sample is slightly lower than the threshold.

Fig. 1(a) shows a time series for the activity of a gene from the SOS DNA repair dataset [4]. The smoothed curve is
accompanied with the scaled quantized curves, with and without theP (d = “1”) andP (d = “0”) terms. The threshold
is chosen to be halfway between the minimum and maximum values in the time series. The arrow shows a point where
these terms make a difference in the decision making. Although that point is slightly less than the threshold, it is
assigned “1” because the neighborhood of this sample makes it more probable that a “1” was transmitted by the gene.
Enhancing the quantization process improves the performance of BN inference. Fig. 1(b) and 1(c) show the inferred
SOS BNs with and without considering theP (d) term, respectively. We use the software application Banjo for BN
inference [5]. In this example, by considering theP (d) term, five true edges are inferred. However, in the case of
traditional quantization, only three true edges are inferred. Motivated by these results, we propose to apply our robust
quantization methods to bigger networks such as the ALARM network [6]. We also believe that incorporating reported
microarray noise models in the decision making process will improve its performance even further.
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Introduction 
Engineering synthetic metabolic pathways has shown promise in the production or overproduction of 
commercially useful biomolecules including isoprenoids (Pitera, Paddon et al. 2007) (Martin, Piteral et 
al. 2003)(Watts, Mijts et al. 2005), polyketides (Pfeifer, Admiraal et al. 2001)(Peiru, Menzella et al. 
2005), non-ribosomal peptides (Watts, Mijts et al. 2005), bioplastics (Aldor, Keasling 2003) and polymer 
building blocks (Nakamura, Whited 2003). Current strain engineering practices however rely heavily on 
domain knowledge and laboratory experimentation.  Bio design automation tools promise to facilitate 
such practices and to reduce experimental efforts. 

When synthesizing new biochemical pathways, two issues must be addressed.  The first is identifying a 
desirable pathway, i.e. set of enzyme-catalyzed reactions, from a large database such as KEGG, or 
MetaCyc. The second is ensuring that the pathway integrates with the host to achieve maximal yield 
while minimally affecting the growth and other essential functions of the host.  We focus in this paper 
on the first problem, pathway identification.  

A method for exploring the biochemical state space using a heuristic search based on minimizing the 
cost of transformation is presented in PathMiner (McShan, Rao et al. 2003). The resulting pathways are 
chemically parsimonious and do not favor pathways that involve the addition of large functional groups 
to compounds.   Other methods to identify pathways are based on atom mapping, and they suffer from 
large computational times (Blum, Kohlbacher 2008)(Pitkänen, Jouhten et al. 2009)  (Hatzimanikatis, Li et 
al. 2005).  As another approach to the problem, Optstrain (Pharkya, Burgard et al. August 2004) builds 
an integrated computational framework for identifying stoiciometrically balanced pathways while 
maximizing product yield and evaluating different microbial hosts. This method requires the curation of 
a database, a non-trivial task, and uses reaction addition and deletion for path identification.  The 
success of this method substantially depends on the curated database. 

Unlike the aforementioned approaches, we utilize a graph-based search to identify potential synthetic 
pathways. First, we explore possible pathways to produce a given target metabolite, regardless of 
whether the resulting paths are viable. In the next step, the pathway is added to the host, and viability is 
verified by applying flux balance analysis (FBA).  The objective of FBA is to maximize target product 
formation subject to the constraint that the modified host produces at least 80% of the wild type’s 
biomass yield.  Viable pathways are then ranked based on maximum product yield.  

Methods 
We investigated the use of graph-based search algorithms to identify synthetic pathways using a specific 
host, E. coli.   Two approaches are developed. In both approaches, the number of reactions used in 
constructing the pathway is used as a cost function and bound to the maximum number of reactions 
that can be reasonably added to the host (Peiru, Menzella et al. 2005). 



In the first approach, a tree is constructed recursively, starting from the target metabolite as the root of 
the tree. A reaction that contains the target metabolite as one of its products is added to the tree and 
represented by an edge.  This edge stems from the root and links to child nodes representing the 
reaction’s main and cofactor constituent metabolites. To control the multiplicity of the paths and 
preserve memory, a cost function technique is employed and only paths which meet the minimum cost 
requirement are retained during tree construction. A simple cost function is the number of added 
reactions along the path.  FBA is then performed on all resulting paths to obtain the maximal yield and 
the reaction flux distribution associated with the production of the target metabolite.  The candidate 
pathways are ranked by the maximal yield of the target metabolite.   

In the second approach, the graph-based search algorithm focuses on metabolite connectivity within the 
KEGG database. Metabolite connectivity reflects the number of reactions in which that metabolite 
participates. Analysis of the KEGG database shows that metabolite connectivity follows a power law 
distribution similar to other evolved, scale-free networks (Barabasi 2009).  In a scale-free network, high 
degree nodes with large connectivity act as connector hubs.  Assuming A, B and C are 3 metabolites with 
A having a high node connectivity and B and C having low node connectivity, a path from B to C is likely 
to proceed through A rather than directly. Our search algorithm uses metabolite connectivity as a guide 
in the path construction.  During tree construction, instead of exploring all reactions leading to a 
particular target (a node within the tree), an edge is added to the tree based on a weighted-random 
selection among all reactions that can lead to the particular target.  The weighting is based on the 
metabolite connectivity.   If the number of all reactions in a pathway exceeds the maximum number of 
reactions that can be genetically added to the host (e.g. 25 for E. coli), the algorithm backtracks along 
the tree edge. Another reaction is then selected. This process continues until a pathway that satisfies 
the bound condition is found. After the pathway is constructed, FBA is performed to calculate the yield. 
Because of its stochasticity, this algorithm is run many times to find the highly probable pathways. 

Results 
To evaluate our algorithms, we used a genome-scale model of E. coli metabolism (iAF1260), searching 
for the paths leading to more efficient production of isopentenyl diphosphate (IPP), a precursor for the 
isoprenoid class of natural products. Using the first approach, our algorithm finds 44 distinct pathways. 
FBA with maximizing IPP production as the objective and producing 80% of maximum biomass as a 
constraint identified 16 pathways, including a pathway involving mevalonate synthesis.  The second 
approach identifies only a single pathway, involving mevalonate synthesis.  The mevalonate pathway 
has been experimentally selected as the preferred route of IPP synthesis in E. coli (Pitera, Paddon et al. 
2007). 

Conclusion  
We designed two algorithms to identify synthetic pathways which lead to potentially higher rates of 
production of a target metabolite. Our first algorithm finds all possible pathways leading to the target 
metabolite production in a higher rate than the wild-type host without ignoring any cofactors in the 
process. The limitations of this method are slow run times and large memory requirements due to 
combinational explosion.   In our second approach, we perform a probabilistic search for pathways 
based on the degree of metabolite connectivity determined from the KEGG database.  With both 
methods, we were able to reproduce experimentally obtained results reported in the literature.  Our 
approach does not take into the consideration potential undesirable side effects when integrating with 
the host.   We intend to address this issue in our future work. 
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Intracellular disease prevention and tuneable device behaviour in bacteria 
Sangram Bagh, Mahuya Mandal, Jordan Ang, David McMillen 

 
Synthetic biology includes an effort to control cellular behavior. One long-term goal is to 
implement medical interventions inside living cells, creating intracellular “disease 
fighters”; one may imagine a system to detect oncogenesis and respond by inducing 
apoptosis, or one that detects viral infection and responds to halt the spread of the 
virus. Although significant challenges lie ahead before human disease prevention is 
practical, progress in modulating cellular states and understanding the molecular 
underpinnings of viral and other diseases  have been rapid, and it is timely to explore 
the features that any intracellular disease-prevention device requires. Such a device 
should: lie dormant in the absence of the disease state; detect the onset of a lethal 
disease pathway; respond to halt or mitigate the disease’s effects; and be subject to 
external deactivation when required. We have created a device that displays these 
properties, in the simplified case of a bacterial disease. Our system detects the onset of 
the lytic phase of bacteriophage lambda in Escherichia coli, responds by preventing this 
lethal pathway from being followed, and is deactivated by a temperature shift. By 
providing a practical demonstration of intracellular disease prevention, our system has 
implications in programmed therapeutics and cellular engineering. 
    We will also present recent results on the construction of a simple genetic device 
whose behaviour can be tuned to display a variety of input-output curves and to 
implement a logical AND response to chemical input signals. 
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Modeling Swarms of Micro-robots for Biological Applications  
Paul Bogdan and Radu Marculescu 

Carnegie Mellon University 
{pbogdan, radum}@ece.cmu.edu 

Extended Abstract 

Key Words: Systems biology, stochastic behavior, random walks, micro-robots, swarms. 

One of the main challenges of modern medicine is the silent progression and migration of various diseases through 
the human body. For instance, cancer is the second leading cause of death in United States because in most 
situations tumors appear and develop undetected by many of the current screening tests or the immune system itself. 
Nevertheless, a large body of research invested over the last 50 years in the analysis of tumor angiogenesis suggests 
that tumors silent progression is most of the time accompanied by an increased demand of nutrients and oxygen 
[1][2]. Most of the time these events are not easily detected by the immune system and the cancer cells can corrupt 
the neighboring and remote organs up to the point where even surgery cannot guarantee a cure.  

Despite these challenges, we argue that we can turn our attention to mother nature to find solutions that complement 
the traditional approaches for diagnosis and treatment. More precisely, a possible approach can rely on exploiting 
the affinity of certain bacteria to swim towards locations with increased consumption of nutrients and oxygen 
representing tumor angiogenesis hotspots. Eventually, the motility of such bacteria can be harnessed to engineer 
micro-robotic swarms capable of monitoring, detection and targeted drug delivery within the human body [3]. 
Although, fabrication of single micro-robots is well underway [3], characterizing the collective dynamics of swarms 
of such micro-robots is not an easy task mainly because there is no computational framework proposed to date for 
modeling, analyzing and designing such swarms for specific applications like targeted diagnostic and drug delivery. 
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Fig. 1. Detection, monitoring and drug delivery problem: Dense network of micro-robotic swarms are released in hard 
to access regions of the human body. The micro-robots dynamics is modeled as the collective behavior of multiple 
interacting random walks in a 3D graph tessellation of space. Each node in the graph has associated a binary random 
variable (σ) representing whether or not this location is occupied by at least one micro-robot. For detection and health 
monitoring purposes the goal is to find the time-dependent coverage of the swarm. The goal of the drug delivery problem 
is to find the time-dependent probability for the nodes in the disease area (see Fig.1(b)) to be occupied by micro-robots. 

Towards this end, we propose a mathematical model for capturing the dynamics of a large number (or teams) of 
self-driven micro-robots (i.e., bacteria propelled capsules) able to swim and access infinitely small spaces inside 
human body; this voyage takes place in a completely non-invasive manner due to their dimensions at micro- or 
nano-scale of such devices. Such engineered micro- or nano-robots are capable of performing massively parallel and 
distributed tasks which may be used for diagnostic and drug delivery purposes. Based on the attractiveness of 
chemotatic bacteria (e.g., Serratia Marcescens) to increased oxygen consumption around tumor locations, we 
envision the possibility of constructing a dense network of such micro-robots which can sense and move through the 
interstitial spaces of the human body due to bacteria swimming mechanisms. For instance, the micro-robotic swarms 
can be deployed in the spinal cord as shown in Fig. 1 (a) and let to freely swim and sense the environment in order 
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to detect potential cancer risks. To model their dynamics in space and time, we tessellate the 3D space into a graph 
as shown in Fig. 1 (a) and estimate the probability for a micro-robot to visit a particular node in the human body. 

In order to advance the state-of-the-art and enable active networks of micro-robotic swarms that are more effective 
in combating various critical diseases with minimal impact on the human body, we develop a statistical physics 
approach aimed at characterizing the dynamics of multiple interacting random walks in a 3D space. In other words, 
we map the movement of T micro-robots swarming within a confined 3D region to the problem of tracking the 
trajectories of T simultaneous random walks which can interact at various points in time and space. Getting into 
more specifics, we study the evolution of T random walks contained within a certain region via a master equation 
which determines the probability P(σ1,…,σM;t) of having a random walker (i.e., micro-robot) at a certain location on 
a lattice graph (i.e., which represents a tessellation of a certain 3D space). As can be seen from Fig. 1 (a), the binary 
random variable σj represents whether or not there  exists a micro-robot at location j (i.e., σj=1 if the micro-robot is 
present and σj=0 if not). For detection and monitoring purposes, our focus is on determining the coverage and 
frequency of visiting certain nodes in the 3Ds space by at least one random walker. In contrast, for solving the drug 
delivery problem, the goal is to have as many micro-robots as possible reaching a critical area as shown in Fig. 1 (b) 
(see target region highlighted in red) which is equivalent to having σm=1, ∀m∈Critical_Area. Note that classical 
diffusion theory cannot be applied to such a scenario since various hydro-dynamical and chemical interactions are 
crucial to be considered in order to capture the true dynamics of the T random walks. Our proposed statistical 
physics approach is meant to capture the collective and competitive behavior of particles and predict the evolution of 
the swarm as a function of the density of walkers and the strength of their interactions. More precisely, we try to 
estimate the number of nodes in the graph visited by at least one random walker by time t, the frequency of visits 
and the hitting time for a collection of random walkers to reach a targeted region. 

a) b)a) b)

 
Fig. 2. Preliminary modeling results: (a) Trajectories of three micro-robots with a random walk behavior without 
interaction and (b) with repellent interaction. The interaction is defined as the change in the direction of motion of a 
micro-robot when two of them intersect their trajectories. 

To stress the importance of considering the interactions among multiple random walks, we simulate the 3D 
trajectories of three random walkers without interaction (in Fig. 2(a)) and with interaction (in Fig. 2(b)) for the 
case of having a 0.5 probability of stepping to a neighboring location at each iteration. In these experiments, the 
simulation length consists of 50000 iterations. To model the hydrodynamic interactions in the case of interacting 
random walks, we consider that when two random walks meet, they repel each other and change directions. As 
shown in Fig. 2(b), the maximum distance traveled by the interacting random walks is approximately 500 distance 
units, while for the case of non-interacting random walkers it is approximately 140 distance units. The difference 
in distance between the two types of random walks can be significant when considering more advanced chemical 
and hydro-dynamical interactions among bacteria or micro-robots. Accurate modeling of trajectories and distances 
travelled by teams of such micro-robots is of crucial importance for solving the diagnostic and drug delivery 
problems in biological systems.   
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A Genetic Programming Framework for the Simulation and Design of Self-assembling, Chemotaxis-
driven Cell Aggregates 
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We have conducted a number of research projects related to the simulation of 2D chemotaxis-based cell aggregation and 
its application to cell-biology-inspired spatial self-organization algorithms. This work began with the development of a 
software system that is capable of simulating the chemotaxis-based cell aggregation behaviors of PC12 cells [1,2].  It was 
extended to model an initially mixed two-cell-type population and the local interactions that lead to the formation of a 
sorted, two-layered structure [3,4].  The cell aggregation simulation system provided a foundation for an approach to 
self-organizing geometric primitives that implements cell-based automated shape composition [5,6,7].  We now intend to 
extend and apply our approach for spatial self-organization to the problem of designing chemotaxis-driven, self-
assembling cell aggregates.  The approach provides a genetic programming framework for designing the chemotactic 
properties/behaviors of individual living cells that, when allowed to move via chemotaxis, will form into cell aggregates 
having a user-specified shape.  Employing the framework will identify the cell behaviors, i.e. chemical emission, chemo-
tactic response, motility and adhesivity, that are needed to produce living cells that aggregate into specific shapes. 

Our approach for automated shape composition provides the overall paradigm for simulating and designing self-
assembling cell aggregates.  The automated shape composition process begins by randomly placing virtual cells in a 2D 
environment. The virtual cells interact with each other via chemotaxis. This interaction produces movement that leads 
them to aggregate into a single user-specified shape. We call these self-organizing virtual cells Morphogenetic Primitives 
(MPs). Each MP is represented by a small disk existing in a toroidal, i.e. periodic, 2D computational environment. Each 
MP emits a “chemical” into the environment. An MP detects the cumulative field at eight receptors on its surface, and 
calculates the field gradient from this input. MPs move in the direction of the field gradient with a speed proportional to 
the magnitude of the gradient. 

While MPs' fundamental interaction is based on a chemotaxis paradigm, for now we do not limit their behaviors / prop-
erties to be physically realistic or completely consistent with biology. Instead, developmental biology provides a motivat-
ing starting point for MPs. In order to customize the interactions of MPs for shape composition, we alter the chemical 
concentration fields around individual cells. Instead of the chemical concentration dropping off as a function of distance 
r (1/r is the physically accurate description), we define the concentration field with a mathematical function of cell-cell 
distance d, one cell's angular location θ in another cell's local coordinate system and simulation time t. Since at this time 
there is no prescriptive way to specify a particular local field function that will direct MPs to form a specific macroscopic 
shape, we employ genetic programming [8] to produce the mathematical expression that explicitly specifies the field 
function. The fitness measure associated with each individual field function is based on the shape that emerges from the 
chemical-field-driven aggregation simulation, and determines which functions will be passed along to later generations. 
The genetic process stops once an individual (i.e. a mathematical expression) in the population provides the desired 
shape, or after a certain number of generations have been produced and evaluated. 

The genetic programming framework that produces local interactions leading to automated shape composition consists 
of three major components and is presented in Figure 1(a). The components are: a genetic programming (GP) engine 
(the Open Beagle System [9]), a cell aggregation simulation system [1,2] and a shape comparison module. The local inter-
action rules that direct MPs to aggregate into shapes and patterns are explicitly represented as a “chemical” field func-
tion. In the context of GP, the individuals to be evolved are these field functions. We start with a population of func-
tions, which is initially randomly generated.  Each function is compiled into a chemotaxis-based cell aggregation simula-
tion program, and defines the chemical field that surrounds all of the individual cells for a particular aggregation simula-
tion.  A simulation program that uses each field function is executed on a node in our cluster, usually producing some 
kind of aggregated structure. The resulting MP aggregate is compared to the user-desired shape, and a scalar fitness value 
is calculated that quantifies how well the computed shape matches the desired shape.  A subset of the top candidates are 
then used to create the next generation of field functions via mutation and cross-over (sexual reproduction).  The proc-
ess continues until a field function produces the desired shape or the maximum number of generations is reached. Figure 
1(b) contains a gear-like shape produced from the shape composition approach.  Several steps of the computational 
aggregation are included. 



The framework will be modified and extended in two ways in order to design living cells that self-assemble into user-
defined shapes. The “modified” cell aggregation simulator will be replaced by one that accurately models cell properties 
and behaviors, rather than one that utilizes artificial chemical field functions.  The internal workings of the simulator will 
be implemented with a data flow language, a type of programming language that is easily merged, mutated and manipu-
lated. Secondly, motivated by the work of Sims [10], the GP engine will be modified to evolve the dataflow structure of 
the simulator, rather than just the chemical field functions of individual cells. This will change the internal program run 
for the cells during simulation and the general behavior of the virtual cells. The challenge here is to evolve the actions 
and behaviors of the simulated cells while ensuring that the resulting simulations remain biologically accurate.  Given 
that these goals can be achieved, the framework will identify the properties of real cells that lead to the aggregation of 
specific shapes. 

     

(a)                                                                             (b)                   
Figure 1. (a) Genetic programming framework for cell-based automated shape composition.                          
(b) Morphogenetic primitives self-organizing into a gear-like shape. 
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Data Model Approaches for Design, Assembly and Validation in Synthetic Biology 
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Abstract 
The application of synthetic biology techniques to the reengineering or novel creation of 
parts, devices and systems needs a high level of skill, knowledge, experimental 
competence and time to produce working components. As the field progresses from an 
artisan culture to that an engineering discipline, software and associated systems will 
need to emulate and learn from much of the current experience and lessons taught at the 
bench.  
 
An important aspect of design is the support for creating assemblies using multiple 
experimental strategies. The current parts/device/assembly approach was based on 
restriction enzyme-based approaches and requires a certain level of engineering of 
biological sequences to fit in with defined assembly strategies, resulting in limitation for 
simultaneous assembly and  in the introduction of scars within assembled sequences.. 
However, as the cost of oligonucleotides drop and there is software support for other 
assembly methods, it becomes important to support developing assemblies with other 
types of approaches. A second important part of the design of parts, devices and 
assemblies is the inclusion of validation and verification methodologies to simulate 
expected behavior and assist with troubleshooting problems with the design. Validation 
and verification tests can occur both at the level of software and experimental design and 
appropriate design of such experiments is linked to the method of assembly as much as 
the inherent nature of the parts used. 
 
We present an alternative data model that explicitly takes into account novel 
experimental strategies for parts assembly. We show how this data model can be used to 
incorporate data on the types of validation and verification strategies that can be used for 
a given assembly methodology. As an example, we use this data model to show how to 
implement a new cloning methodology that will incorporate oligo based assembly of 
multiple blocks of DNA, thus allowing users to use or move beyond conventional 
restriction enzyme-based cloning. We demonstrate how validation and verification 
strategies can be developed within the data model to support and optimize different types 
of assembly technologies. The ultimate intention of this data model is to provide a means 
of bettering current design practices through guided experimental planning. 



Scalable open source software framework for laboratory automation and laboratory 
devices 

Jonathan Cline 
 
Biology laboratories contain computerized equipment as independent units controlled 
via front-panel user interfaces or via computer software/graphical applications. A single 
biology experiment may employ a combination of equipment (pumps, valves, robotic 
arms, shakers, liquid handlers, thermocyclers, detectors, robotic systems), many of 
which require programming independently, with differing programming limitations. A 
scalable software framework has been developed which provides a unified approach to 
controlling varied biology laboratory equipment and robotics systems over an internet 
network. The software provides engineers with plug-in Perl modules for adding new 
device command-compilers and probing for connected devices, while providing the 
laboratory user the ability to write higher-level programming abstracted from individual 
device commands. The placement of this software package in a large open source 
repository (CPAN, as Perl Robotics) invites wide scale development to support a range 
of new and legacy laboratory devices. Current hardware support includes Tecan 
Genesis/EVO, FIAlab MicroSIA system, and custom USB peripherals. 
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Modularity is crucial for the in silico design and testing of biological systems [1]. Recently, we developed an online 

library of modular mathematical model components for synthetic biology [2] using the modular model exchange 

format CellML [3]. In addition to synthetic biology, where new biological constructs are being created, this library is 

now being extended for general intracellular modeling in the biomedical context [4,5] as researchers seek to 

understand the wealth of systems already existing in the natural world.  

To deliver the most benefit to researchers from the expanding repository contents, we seek to provide module 

classification, searching, composition, and visualization services to enable integrative modeling and analysis. These 

integrative technologies will be supported by annotation schemes adding biological and model structure 

semantics. Two prototype ontologies have already been developed, one supporting electrophysiological model 

composition [6], and the other supporting model visualization [7,8]. We are extending and integrating these 

ontologies with international standards [9,10,11] where appropriate, and have recently extended the visualization 

ontology to cater for synthetic biology modules from our new Repository  (see Fig 1.). 

 

Fig 1: a) A schematic of a GFP producing system, which is encompasses translation, transcript and RNA and product 

degradation. b) A computer-assisted visualization using standardized symbols of the same system, implemented as 

an annotated model composed from modular CellML components.  

Once annotated, tools will be required to deliver core integrative functionality. Our provisional architecture for 

providing core services is shown in Fig 2. 

Modular, annotated model components will be stored in the CellML Repository [12], accessible either via web 

interfaces [13] or through client-side applications. Search, composition, and visualization functionality will be 

implemented by extensions to the CellML API [14], supporting the augmented construction of intracellular models 

covering signal transduction, gene regulation, metabolism, and electrophysiological processes. Analysis services for 

these models will include simulation, sensitivity analysis, and parameter fitting. Due to the computation-intensive 
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nature of these functions, distributed parallel computing technology will be employed, with a prototype service 

currently under development with ‘BestGRID’ [15] in New Zealand and ‘Nimrod’ [16] in Australia. 

 

 

 

 

 

 

 

 

 

 

Fig 2: The proposed architecture for integrative model services. The CellML API supports the development of 

services which can be executed on local machines, online via web services, and/or in GRID architectures. 

The development of this technology will make the power of modular CellML available to all researchers, and 

simultaneously make it possible to compose models encompassing an increased proportion of cellular processes. 

This will lead to more realistic investigation of emergent functions and greatly facilitate the pursuit of solutions to 

scientific questions within the complex intracellular environment. 
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Towards Distributed Web of Registries: Design, Implementation and Practice of the 
JBEI Registry 

 
Timothy Ham, Zinovii Dmytriv, Nathan Hillson, Jay Keasling 

 
The tremendous growth of Synthetic Biology and the increasing number of new 
software tools have highlighted the need for a robust, freely available and distributed 
parts database software (a registry of parts). Even as the number of standard biological 
parts have grown, the way the parts are stored and managed have not advanced at the 
same pace. Several automation tools now exist, but they are hampered by lack of a 
registry that can be used programmatically to pull from and push parts into. Additionally, 
it is desirable for any design software to keep track of local intermediates as they are 
created and different designs are tried and discarded, without polluting a public registry. 
An open source, distributed registry that anyone can use via on-line or directly as a 
software library stack would solve many of these issues and aid the advancement of 
other automation tools by unifying and simplifying how parts are stored and managed. 
 
The Joint BioEnergy Institute (JBEI) Registry team aims to provide the community with 
an open source implementation of a Registry of Biological Parts. The JBEI Registry 
(JBEIR) is a software platform and a web application that provides tools to organize, 
categorize, search and manage biological parts in a web accessible way. It is designed 
from the ground up to bridge the gap between legacy biological constructs and the new 
BioBricks paradigm by transparent support between plasmids, strains, and “parts”. 
Additionally, JBEIR has been designed for a distributed installation, so that anyone can 
run their own registries, and yet provide mechanisms for simple information exchange 
and data synchronization. It is built upon open source software, and licensed in the 
most liberal way to encourage adoption and participation.  Or users can simply start 
using it from our web site.  
 
With the new version 2 release, we provide a new synthetic biology inventory platform 
(ICE) as well as a new graphical sequence annotator (VectorEditor). ICE (Inventory of 
Composable Elements) is the software stack that manages the parts, with a friendly 
web user interface. Version 2 now has per user workspaces and permission control on 
parts. Additionally, it provides a SOAP interface for web services as well as Java API 
service layer. As ICE implements a clean service layer, it is possible to use it’s API as a 
data abstraction layer to build other automation tools. This means that ICE can be used 
as a library to provide registry functions without running the web interface. VectorEditor 
is a cross platform sequence viewer and annotator that works within a web browser on 
multiple computing platforms. These tools are released under the BSD license for 
anyone to use, modify and extend.  
 
JBEI ICE and VectorEditor has been chosen by the newly formed International Open 
Facility Advancing Biotechnology (BIOFAB) as their registry and platform to advance 
techniques and tools for synthetic biology. The open, modular, and extensible 
architecture we have developed represents a starting point for many useful bio-design 
automation software. 



Towards Automated-assembly of Biological Parts 
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The production of clean renewable biofuels from cellulosic starting material requires concerted 
feedstock engineering, deconstruction of plant matter into simple sugars, and microbial 
fermentation of the sugars into biofuel. These three efforts share significant molecular biological 
challenges, including the construction of large enzymatic libraries (e.g. vast collections of 
glycosyl transferases, cellulases, and efflux pumps), the generation of combinatorial libraries 
(e.g. multi-functional enzyme domain fusions; variations in copy number, promoter and 
ribosomal binding site strength), and the concurrent assembly of multiple biological parts (e.g. 
the incorporation of an entire metabolic pathway into a single target vector). With these 
challenges in mind, we are developing hybrid multi-part assembly methodologies and translating 
them to robotics-driven protocols. Given a target library to construct, our vision is that the high-
throughput methodology will provide automated oligo and optimal assembly process design, and 
robotic control of the PCR and multi-part assembly reactions. The beneficial output of this work 
will include reagents and resources for, and collaborations with, members of the larger life 
sciences communities, reducing the time, effort and cost of large scale cloning and assembly 
tasks, as well as enabling research scales otherwise not feasible without the assistance of 
computer-aided design tools and robotics. 
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1 Summary

We present a design methodology for performing dig-
ital signal processing (DSP) operations such as filtering
with biomolecular reactions. From a DSP specification,
we demonstrate how to synthesize reactions that produce
time-varying output quantities of molecules as a function
of time-varying input quantities. We synchronize the com-
putation with a three-phase “handshaking” protocol that
transfers quantities between molecular types based on the
absence of other types. Our method produces computation
that is accurate and independent of the reaction rates, as-
suming only that some reactions are faster than others. The
scheme is efficient: both the number of molecular types
and the number of reactions grow linearly with the size of
the DSP specification. We illustrate our method with the
design of a moving-average filter. The method is generally
applicable to the design of finite-impulse response (FIR)
and infinite-impulse (IIR) filters. These can perform a va-
riety of useful operations such as high, low and band-pass
filtering.

2 Background

Interesting biochemistry typically involves complex
molecules such as proteins and enzymes. Within the con-
fines of a cell, the quantities of such molecules are often
surprisingly small: on the order of tens, hundreds, or
thousands of molecules of each type. At this scale, indi-
vidual reactions matter and the problem must be modeled
discretely.

In our view of biomolecular computation, the quan-
tities of molecules are whole numbers (i.e., non-negative
integers). Reactions fire and alter these quantities by dis-
crete, integer amounts. Consider the reaction

a + b
fast−→ 2c.

When this reaction fires, one molecule of a is consumed,
one of b is consumed, and two of c are produced. (Accord-
ingly, a and b are called the reactants and c the product.)
Each reaction has an associated rate (listed above the arrow

This work is supported by NSF EAGER Grant CCF0946601 and by
the Biomedical Informatics and Computational Biology program at the
University of Minnesota.

in our notation). Given several reactions, the probability of
each firing is proportional both to its rate and to the quan-
tities of its reactants present. Although we refer to rates in
relative and qualitative terms, e.g., “fast” vs. “slow,” these
are, in fact, quantitative values that are either deduced from
biochemical principles or measured experimentally.

3 Objectives

A typical signal processing operation produces an out-
put signal by filtering or transforming an input signal: ex-
amples are smoothing a signal with a moving-average filter
and performing a Fast Fourier Transform (FFT). Digital
signal processing with integrated circuits for applications
such as audio and video is a mature, sophisticated domain.
We aim to apply and extend such concepts to the new do-
main of biomolecular computation.

We will examine the abstraction of signal process-
ing from a design perspective: how can we synthesize
biomolecular reactions that produce specific output quanti-
ties of molecules as a function of input quantities, perform-
ing filtering operations? The challenge with biomolecular
computation is that the reactions fire asynchronously at
variable rates, dependent on factors such as temperature.
In spite of this, we aim to implement computation that
does not depend on the rates.

Although conceptual for the time being, our method
has potential applications in domains of synthetic biology
such as biochemical sensing and drug delivery. We are ex-
ploring DNA-based computation via strand displacement
as a possible experimental chassis.

X

Y

0.5 0.5

Delay

Input

Output

Fig. 1. Moving average filter.



4 Method

DSP systems are generally specified in terms of four
basic modules: splitting, scalar multiplication, addition,
and delay elements. An example of such a specification is
shown in Figure 1. The input signal is split; both signals
are multiplied by one-half; one signal is delayed; and the
two signals are added to form the output. This system com-
putes a moving average: given a time-varying input signal
X , the output signal Y is a smoother version of it. More
precisely, the output is one-half the current input value plus
one-half the previous value.

In the context of biomolecular computation, the sig-
nals are quantities of molecular types. We implement a
biomolecular moving-average filter with the following re-
actions. These molecular types are labeled in Figure 2.

r
slow−→ X + r

g + X
slow−→ A + C + g

2C
fast−→ R

2A
fast−→ Y

b + R
slow−→ G + b

r + G
slow−→ B + r

g + B
slow−→ Y + g

∅ slow−→ r

R + r
fast−→ R

Y + r
fast−→ Y

∅ slow−→ g

G + g
fast−→ G

∅ slow−→ b

B + b
fast−→ B

X + b
fast−→ X

b + Y
slow−→ b

Quantities are transfered between categories of molecular
types, coded by three colors: red, green and blue. Quanti-
ties are transfered between two types in the absence of the
third type: red goes to green in the absence of blue; green
goes to blue in the absence of red; and blue goes to red in
the absence of green. To synchronize on the absence, we
continually generate types r, g, and b. (The symbol ∅ in-
dicates “no reactants” meaning the products are generated
from a large or replenishable source.) These types only
persist in the absence of the corresponding color-coded sig-
nals: r in the absence of R and Y ; g in the absence of G;
and b in the absence of X and B. Note that the input X
is sampled in the blue phase. The output Y is produced in
the red phase.

Splitting is implemented by choosing a reaction pro-
ducing several different product types: X goes to both A
and C. Scalar multiplication by 0.5 is implemented by sto-
ichiometry: two molecules of C go to one of R and two of
A go to one of Y . Addition is implemented by choosing
several reactions producing the same product type: both A
and B go to Y .

X

BGR

Y

AC

0.5 0.5

Fig. 2. Moving average filter with a three-compartment
delay.

The reactions implement the requisite computation: the
output quantity of Y produced in the red phase is one-half
the current value and one-half the previous value of the
input quantity of X sampled in blue phases. The compu-
tation require only two rate categories: “fast” and “slow”.
Given reaction rates that broadly fit this categorization, the
computation is exact; the moving-average function does
not depend on the specific reaction rates.1

5 Simulation Results

We used Gillespie’s stochastic simulation algorithm
(SSA) to simulate these reactions. We used a rate of 1 for
“slow” and a rate of 1000 for “fast”. We plot the results in
Figure 3. The figure shows the quantity of the input and
output – types X and Y respectively – as a function of
“sampling phases”. The time for each phase is set by the
reactions; it is generally several magnitudes longer than
it takes for slow reactions to fire to completion. We set
the input quantity to new random values at the beginning
of each sampling phase. The figure shows the theoretical
output, i.e., an exact calculation of a moving average of
the input, in green. It shows the simulated output in red.
We see that the output is a smoother version of the input.
The simulated output has nearly perfect agreement with
the theoretical output.

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

Sampling Phase

Q
ua

nt
ity

 

 

Input

Theoretical Output

Simulated Output

Fig. 3. Simulation results for the moving average filter
(1000 trajectories in SSA).

1The assumption that we make about the reactions is that those in the
“fast” rate category are much faster than those in the “slow” rate category;
if a “fast” reaction can fire, it does so repeatedly, until its reactants are
consumed and it can fire no more – this before a “slow” reaction fires at
all.
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I. ABSTRACT 

Exploiting chip technologies in the nanometer scale 

paves the way towards adding more and more 

processing-cores on the same chip. Multi-core 
processing increases the computational power for 

systems-on-chips (SoC), thus leveraging chip abilities to 

run more complex and data-intense applications [1]. 

Many biological and medical applications require high 

computational power, and the use of Multi-Processor 

SoC (MPSoC) technologies for biochips can offer a 

solution. However a gap still exists between the 

biological field and the Information Technology field 

since there is a lack of methodologies bridging between 

the two. The success of such multicore biochips 

depends not only on reliable chip fabrication but also on 
mapping relevant applications (with a market demand) 

to these chips. Thus, it is not the hardware (HW) alone 

nor the software (SW) alone that will increase the 

possibilities of success, but it is the reliable combination 

of a HW, SW, and biological algorithms that function 

together to serve other disciplines (e.g. synthetic 

biology, medicine, biomedical engineering, etc), whose 

application areas are largely demanded. The most 

relevant applications are those requiring high 

computational capabilities while still respecting critical 

requirements in time and power consumption. Current 
trends in MPSoC must deal with HW/SW Codesign 

methodology since it has a significant effect on the 

efficiency of the final system as well as the time to 

design, develop, test, and produce. When designing both 

the HW and SW for a bio-related application, the 

biological (application) layer imposes many parameters. 

Therefore, a design flow is important in such a 

multidisciplinary work in order to ensure that system 

performance meets expectations. 

   We investigate several aspects of a HW/SW codesign 

methodology as well as design approaches that can meet 

the requirements of three different (but goal-related) 

disciplines, namely: bio-related applications, SW, and 

HW (See Figure 1). In using this methodology we are 

able to propose several application-aware and realtime 

approaches that optimize the MPSoC design for 

rendering high SW computations within the needed 

components neither more nor less depending on the 
application-level requirement). Our treatment of the first 

design shows that there are optimal numbers of 

resources for each application requirement, which- in 

turn- minimize costs and betters performance. Our 

experimental results demonstrate that different accuracy 

demands from the biological-layer may result in 

communication limited architecture rather than 

computation limited architecture. Hence, the 

methodology aids in investigating the choice of onchip 

communications, busses, and general architecture [2]. 

The intention is to use a methodology that looks at the 

biological application, SW design, and HW design at 

the same time in order to evolve to new systems on chip 

that may make a difference. Technically, we aim at 
rendering more computations in less time, on a biochip 

with smaller size, and with less expense. The 

performance demand and the vision of having a market 

success, i.e. contributing to lower costs, pose many 

challenges on the HW/SW codesign to meet these goals. 

This calls upon the development of new integrated 

circuits for biological applications featuring increased 

energy efficiency while providing higher computation 

capabilities, i.e. better performance. One of the 

applications we work on is the realtime 12-lead ECG 

analyses (using 12 input biological signals at high data 

rates), which is an ideal target for a bio-specific MPSoC 
implementation. In the first iteration of the design, we 

need to develop flexible SW algorithms that can fit 

within the dynamic design flow. In this respect, we 

explore the bio-specific design space by analyzing 

different HW and SW architectures. As a result, we 

realize a design with twelve processors that can 

compute 3.5 million arithmetic computations and 

respect the real time hard deadline for our application 

(3.5-4 secs), and that can deploy the bio-specific 

algorithms. Then, we investigate the configuration space 

looking for the most effective solution, 
performance/energy-wise. Consequently, we present 

three interconnect architectures (Single Bus, Full 

Crossbar, and Partial Crossbar) and compare them with 

existing solutions. Contrary to other domains (e.g. 

multimedia and entertainment) we need accurate system 

component models already in the early design stages to 

limit the degrees of execution unpredictability to the 

minimum. Therefore, we need cycle-accuracy [3] in the 

design, modelling, and simulation. We demonstrate a 

practical case study for our application-specific MPSoC 

HW/SW codesign flow, where we exploit industrial IP 

cores of STMicroelectronics DSPs (ST220 and STBus) 
[1], and we look at the challenging 12-lead ECG 

application, with different input frequencies in the KHz 

ranges. We create robust algorithms that can fit the SW-

level parallelization, HW level bottlenecks (computation 

and communication), and real-time diagnosis. Our Bio-



specific design methodology envisions full system 

modeling accuracy, high HW/SW parallelism 

exploitation, and computation vs. communication 

parallelism [2]. Moreover, we illustrate the potential 

advantages that MPSoC technology can bring to 

realtime biological analysis in the following points: (i) 
larger time margin to run diagnosis algorithms, (ii) 

energy efficiency, (iii) and improved scalability to 

challenging higher sampling frequencies and to more 

accurate analysis algorithms.  

 

  Figure 1. Methodology for bio-specific HW/SW co-

design for Multicore biochips [4]. 
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When designing and analyzing genetic circuits, researchers
are often interested in the likelihood of the system being in
a given state. Usually, this involves simulating the system
to produce some time series data and analyzing this data to
discern the state probabilities. However, as the complexity of
models of genetic networks grow, it becomes more difficult for
researchers to reason about the different states by looking only
at time series simulation results of the models. To address this
problem, this paper introduces a methodology for converting
a Genetic Circuit Model (GCM) into a labeled Petri net
(LPN). The state space of the LPN is then computed and the
resulting state graph is analyzed using Markov chain analysis
to determine the probabilities of the circuit being in any of
these states. This paper illustrates a use of this methodology
to determine the likelihood of failure in three implementations
of a genetic Muller C-element.

Applying Petri nets to the analysis of biological systems is
not a new concept. Goss and Peccoud used stochastic Petri
nets (SPNs) to model systems by assigning the number of
tokens in each place to be the amount of each species and
the transitions to be reactions in the network [1]. In addition,
hybrid Petri nets (HPNs) which are composed of a discrete
part for modeling discrete quantities and a continuous part
for modeling continuous quantities have been used to analyze
biological networks [2]. Our LPNs, however, model discrete
variables as the species amounts, the places as important
species thresholds, and the transitions as abstractions of many
reactions firing to move between these thresholds. The conver-
sion process of a GCM into an LPN consists of creating a new
variable in the LPN for each species in the GCM, creating a
place for each threshold provided by the user, linking these
places together with transitions to and from the place with the
closest greater than threshold and the place with the closest
less than threshold, and adding variable assignments to the
places. Finally, transition rates are calculated by formulating
equations based on the activation and repression influences.

Once the conversion process is complete, the LPN’s state
graph can be found using a simple iterative algorithm that
walks through the possible markings of the places in the
LPN starting with the initial marking. From here, an iterative
Markov chain analysis algorithm called the power method is
used to calculate the probability of the system being in each
state of the state graph. The general idea behind this method
is to initialize a vector to a random initial distribution where

all of the entries sum to one. This vector is then continually
multiplied by the transition matrix until the values in the vector
converge [3]. Figure 1 shows an example of converting a GCM
consisting of two species that repress each other into an LPN
using thresholds at 0, 20, and 40 and performing Markov chain
analysis on the resulting LPN to determine the system’s state
probabilities. As seen in the figure, the GCM may grow in
complexity when converted into an LPN; however, the LPN
is used as an internal logical representation of the circuit and
is not normally viewed or modified by the user.

The methodology presented here has been implemented
within iBioSim [4], and it has been applied to several
implementations of a genetic Muller C-element. C-elements
are state holding gates where the output either matches the
inputs when all of the inputs agree, or the output retains its
value from the last time the inputs are the same and does not
change until all of the inputs are equal again. These circuits
are useful when designing decision circuits for systems such
as quorum sensing networks because they can be used for a
system to come to a consensus on a signal and then can help
maintain that decision with their state holding properties [5].

The first analyzed circuit is implemented by a majority gate
where the two inputs to the circuit and a feedback signal
from the circuit’s output are fed through three NAND gates
in varying combinations. The outputs from these NAND gates
are then compared with each other and the signal that has
the majority of the votes is selected as the new output. The
next circuit is an implementation of a speed-independent C-
element [6]. The idea behind this circuit is that no matter how
fast or slow the inputs change, the output maintains its state or
changes accordingly. The final circuit constructs the C-element
from a genetic toggle switch [7]. This circuit works by taking
an inverted NAND gate signal of the two inputs as the switch
part of the circuit and an inverted NAND gate signal of the
inverted inputs as the reset part of the circuit. These circuits
are described in more detail in [5] and [8].

When performing the Markovian analysis on these circuits,
special conditions were added that would keep track of the
probability of changing from one state to another state instead
of just keeping track of the probability of being in each
individual state. This way, the probabilities of the C-elements
losing their states could be plotted as shown in Figure 2.

In conclusion, the logical representation of a genetic net-
work combined with a Markov chain analysis engine will
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Fig. 1. (a) A simple GCM where CI represses CII and CII activates CI. (b) The LPN that is generated from the GCM in (a). This LPN was generated by
selecting levels at 0, 20, and 40 for CI and CII. The subnet on the left represents the concentration of species CI, and the subnet on the right represents the
concentration of species CII. (c) The resulting state graph annotated with probabilities after Markovian analysis is performed on the LPN in (b).
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Fig. 2. Results of performing Markov chain analysis on three genetic Muller
C-element circuits. These results show that the majority gate C-element fails
about 6.60 percent of the time while the speed-independent and toggle switch
C-elements perform better only failing about 4.09 percent and 4.75 percent
of the time, respectively. All of these genetic circuits are analyzed with levels
at 0 and 25.

help researchers greatly because it will allow them to ob-
tain the probability of each state of the system occurring.
This will ultimately lead to researchers making better design

decisions because they will be able to see how robust their
models are. The methods discussed here have been imple-
mented in a tool called iBioSim which is freely available at
http://www.async.ece.utah.edu/iBioSim/.
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 Short Abstract — Peripheral naïve T-cells can differentiate into several types of effector cells and the relative 
numbers produced of each cell type are critical for many immune-related pathologies. To study this system, we have 
constructed a logical model in which each molecule type is treated as a discrete variable. We first validated that the 
model reproduced several important experimental observations: the cell fate dependence on antigen dose and on the 
Akt/mTOR pathway, the inverse correlation between Foxp3 and pS6, and the changes in Foxp3 expression in time for 
high antigen dose. Construction and validation of the model helped to clarify the logical relationships among 
molecular inputs at several key control points in the process.  Predictions of the model have also led to the design of 
new experiments to probe the behavior of key elements such as PTEN, SMAD3, and IL-2 under different initial 
conditions.  

I. MOTIVATION 
ECHANISMS involved in DC-mediated expansion of regulatory T (Treg) cells, as opposed to helper T (Th) 
cells, are still not well understood, although recent data have demonstrated roles for antigen dose, co-

stimulatory molecules and specific cytokines [5][7]. More specifically, experimental data suggest that there is a 
T cell-intrinsic mechanism such that low T-cell receptor (TCR) signaling levels favor Treg induction [7]. Recent 
studies have also emphasized the role of the Akt/mTOR signaling pathway in inhibiting the induction of Treg 
cells [5]. Therefore, it is essential to understand the pathways leading to DC-mediated differentiation of naïve T-
cells. Preventing Treg cell induction at the level of DC-T cell interactions might be one way to eliminate 
antigen-specific Treg cells and thus decrease or even reverse immune suppression in cancer. 

II. LOGICAL MODELING APPROACH 
Logical and, in particular, Boolean modeling approaches have been playing an increasingly important role in 

the analysis of complex biological systems. Modeling regulatory networks by means of Boolean networks was 
introduced in the late sixties [3], but has received more attention in recent years [2][4]. We created a Boolean 
model, in which each element of the network is represented as a Boolean variable. These variables can take two 
values: ‘1’ and ‘0’, representing active (present) and inactive (absent) state of the element, respectively. 
Interactions between elements in a logical model are represented using Boolean functions, i.e., combinations of 
the basic operators ‘and’, ‘or’, and ‘not’. The first step in creating a logical model is to decide which elements 
and pathways need to be included in the model. For the purpose of studying the differentiation of naïve T cells, 
we have identified a set of elements that are found to have important roles in this process [5][7]. Next, the most 
difficult step in the formulation of the model is determination of the best logical representation of variable 
update rules when there are multiple input variables. The decision whether to represent these relationships using 
‘and’ or ‘or’ is not always straightforward. However, in most cases it is possible to infer model relationships 
from verbal descriptions. Furthermore, we have found examples where only one of several possible 
formulations of the regulatory interactions for a particular node produces realistic model behavior.  

III. RESULTS 
We created a logical model for the T cell differentiation following the steps described in Section II and ran 

simulations of the model using BooleanNet tool [1]. Each simulation run uses random asynchronous updates of 
values of elements in the model, with overall 50 simulation steps. Selected results are presented in Fig. 1, 
together with their corresponding experimental results [5][7]. For each scenario, 300 independent simulations 
were conducted in order to find the average variable values. Foxp3 is used as a marker for Treg cells, and thus, 
high percentage of Foxp3 represents higher amounts of Treg cells. 

Experimental results from [7] presented in Fig. 1(a)(top) show that high antigen dose (TCR high) produces 
mostly Th cells and low antigen dose (TCR low) case generates a high fraction of Foxp3-expressing Treg cells. 
Simulation results in Fig. 1(a)(bottom) show that TCR high trajectories all result with Foxp3 expressed, 
whereas TCR low trajectories all end with Foxp3 absent. The TCR high simulations also match the 
experimental observation of transient Foxp3 expression, as can be seen from the red curve in Fig. 1(a)(bottom) 
and for the 18 hour time points in Fig. 1(a)(top). Fig. 1(b)(top) presents simulations in which TCR high is set 
for four time steps and then turned off, corresponding experiments in which the antigen is removed after 18 
hours. Again, simulations agree qualitatively with the experimental finding that a substantial fraction of the 
resulting cell population expresses Foxp3 (data not shown). Results presented in Fig. 1(b)(bottom) illustrate the 
consequences of blocking Akt or mTORC1 activation following TCR high after four time steps, corresponding 
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to experiments done with inhibitors that are added 18 hours after strong TCR stimulation. Inhibition is modeled 
by fixing the value of either Akt or mTORC1 at ‘0’ after four time steps. Again, simulation results agree with 
the experimental finding that a substantial Foxp3 positive population is generated under these conditions. 
Finally, Fig. 1(c) shows results obtained from experiments [7] (top) and logical model simulations (bottom) that 
indicate an inverse correlation between pS6 levels at early time points (18 hours) and Foxp3 expression later on 
(7 days).  

IV. DISCUSSION 
The logical model that we have constructed for T cell differentiation reproduces many of the important 

experimental results. The analysis of the results obtained using the logical model has also initiated further 
experimentation. Analysis of transient Foxp3 expression for the high-antigen dose case (Fig. 1(a)) indicates that 
the timing of initial Foxp3 expression relative to mTORC1 activation determines whether transient expression 
occurs.  In our simulations early STAT5 activation of the Foxp3 promoter occurs in all trajectories with 
transient Foxp3 expression, which points to the need for further experiments to determine whether interfering 
with STAT5 activation is sufficient to eliminate transient expression or other factors are involved that should be 
considered in the model. Factors influencing transient expression may also affect the cell fate decision under 
other conditions. Simulation results also emphasize the need for better experimental characterization of PTEN, 
particularly its differential activity in Treg vs. Th.  

Furthermore, the simulation results have also suggested the rationale behind oscillations in the Foxp3 and IL-
2 values after logical relationships are changed from ‘and’ to ‘or’ or vice versa. These oscillations either indicate 
which of the alternative relationships is the one closest to the realistic behavior, or they indicate that there is an 
important impact of the negative feedback loop that could only be captured when the variables representing 
element states are allowed to have more than two different values.  

Thus, by using the logical model that we constructed, we have identified the elements that may play a critical 
role in the system and we are conducting new experiments to obtain further measurements of these elements 
(e.g., PTEN, SMAD3, IL-2), as well as to gain more insight into element relationships (e.g., pS6 kinetics with 
respect to the existence of IL-2). We anticipate that these measurements will further advance our understanding 
of the determinants of the peripheral T cell fate and thus, result in creating mechanism for controlling T cell 
differentiation and for preventing Treg induction.  
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 (a) (b)  (c) 
Fig. 1. Logical model reproduces experimental results. (a) Dependence of Foxp3 expression on time and antigen dose (TCR 
low vs. TCR high): results from experiments [7] (top) and logical model (bottom) (b) Logical model results for the 
dependence of Foxp3 expression on: antigen removal after four stpes (top) and the addition of Akt and mTORC1 inhibitors 
after four steps (bottom). (c) The inverse correlation of pS6 and Foxp3: results from experiments [7] (top) and logical model 
(bottom).  



Synthetic gene circuits with a cell-free toolbox 
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In the past 10 years, advances in molecular biology have led to the emergence of 
systems biology and synthetic biology. These new research areas aim at understanding 
the information structure and dynamics of living systems such as gene regulatory 
networks. Many innovative approaches have been developed to study the flow of 
information in biological systems. While most of the studies are performed in vivo or in 
silico, only a few in vitro approaches have been proposed. 
Cell-free protein synthesis is increasingly used to produce large amounts of proteins in 
vitro. Cell-free systems combine a powerful bacteriophage transcription, in most cases 
the T7 RNA polymerase, to a cytoplasmic extract from an organism, such as E. coli, that 
provides the translation machinery. These systems have been prepared for many types 
of applications, mostly in biotechnology. Recently, cell-free protein synthesis was used 
to reconstitute information processes outside a living organism such as elementary 
gene circuits and pattern formation. These studies were limited, however, by the current 
available cell-free systems which have not been optimized for synthetic biology 
purposes. In particular, transcription is restricted to a few promoters and only a few 
synthetic bacteriophage promoters regulated by operators have been described. 
Moreover, the high protein synthesis rate of cell-free systems needs to be balanced with 
a high degradation rate of both transcripts and gene products to ensure economical 
bookkeeping of the information processing. No mechanisms of messenger RNA 
inactivation and protein degradation have been described to adjust these parameters. 
These limitations reduce considerably the potential of cell-free protein synthesis as a 
system to engineer and to run gene circuits in vitro. 
Our laboratory has developed a cell-free expression toolbox specifically adapted for the 
synthesis of gene circuits in vitro. Transcription/translation is carried out in a E. coli 
extract which works with seven E. coli sigma factors and two bacteriophage RNA 
polymerases. The system includes mechanisms to tune the mRNA inactivation rate and 
the protein degradation rate. Protein synthesis is controlled by adjusting gene 
concentrations, promoter strengths, synthesized messengers and proteins lifetime. The 
toolbox provides unique transcription modularity and a large set of adjustable 
parameters to engineer synthetic networks in vitro. 
This cell-free toolbox is used for two purposes: (1) the construction and the study of 
elementary gene circuits and (2) a constructive approach to synthetic cell. Multiple 
stage transcription cascades, AND gates and negative feedback loops have been 
engineered. These circuits have revealed underlying mechanisms such as the 
competition of sigma factors for the E. coli core RNA polymerase that can result in 
transcription auto-regulation or inhibition. Output signals of these circuits can be tuned 
in a wide dynamic range depending on mRNA and protein degradation rates. The 
toolbox is also used to synthesize an artificial cell using a constructive bottom-up 
approach. The cell-free extract is encapsulated into cell-sized phospholipids vesicles. 
Properties of the synthetic vesicles are developed from the internal gene expression. 
The main question asked by this work is: how far can we go in the reconstitution of gene 
networks in vitro with a constructive, deterministic approach? The perspectives and the 
limitations of this approach will be discussed. 
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Abstract 
Discovering pairs of amino acid residues in proteins that have undergone correlated evolution 
(coevolution) provides valuable information for both understanding protein evolution and 
predicting the effects of mutations during protein design. Previous efforts have been aimed at 
detecting residue coevolution through statistical analyses of protein sequence alignments1. These 
studies have identified networks of coevolving residues in a number of protein families, and 
these networks may play functional roles such as mediating allosteric communication between 
distant sites in a protein. However, in many cases it is not clear whether the coevolution of a pair 
of residues is structurally or functionally significant. Moreover, these sequence-based methods 
require a large number of diverse protein sequences belonging to a given protein family in order 
to identify statistically significant pairs of coevolving residues. This prevents these methods from 
being applied to proteins without numerous extant sequences, for example, novel proteins that 
have been designed to carry out a particular function. Here, we present a novel method to predict 
the extent of coevolution between all pairs of residues using the three-dimensional structure of a 
given protein. This method uses a deterministic, SAT-based protein design algorithm2 to identify 
the global minimum energy conformation for all possible single mutations. A pair of residues is 
“coupled” if the mutation of one residue perturbs the side-chain conformation of another residue 
from its global minimum conformation, and the extent of coupling between two residues is 
quantified using a metric based on mutual information. This approach is evaluated using a 
dataset of known coevolving residues in the SH33, PDZ, PAS, SH2 and S1A serine protease 
protein families4. A comparison of coevolving residues identified with a sequence-based 
approach and coupled residues predicted with our structure-based approach for SH3 domains is 
shown in Fig. 1, and a cluster of coupled residues that constitutes the hydrophobic core is shown 
in Fig. 2. We demonstrate that our approach is more effective at predicting residue coevolution 
than a similar method that uses Monte Carlo optimization, emphasizing the importance of 
deterministic protein design algorithms. Our approach can be used to understand how mutations 
affect distant sites on a protein, which is of great importance for protein design applications that 
require optimizing the catalytic efficiency of an enzyme or tuning the specificity of a protein-
protein interaction. 
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3) Larson, S. M., A. A. Di Nardo and A. R. Davidson. Analysis of covariation in an SH3 
domain sequence alignment: applications in tertiary contact prediction and the design of 
compensating hydrophobic core substitutions. J. Mol. Biol. 303:433-446 (2000). 

4) Halabi, N., O. Rivoire, S. Leibler and R. Ranganathan. Protein sectors: evolutionary units 
of three–dimensional structure. Cell 138:774–786 (2009). 



 
Figure 1. Coevolving residue networks in the SH3 domain protein family. Nodes represent 
residues and edges represent pairs of coevolving residues identified using a sequence-based 
approach. Red edges denote pairs of coevolving residues that were successfully predicted with 
our structure-based approach. 

 
Figure 2. Structure of an SH3 domain showing a cluster of coevolving residues (6, 20, 26, 39, 50 
and 55) with side-chains illustrated as green spheres. 
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Architecture for Synthetic Organism Design 
Matthew Peterson, Steven Fairchild, John Dileo 

 
 
Computational tools that enable automatic and accurate synthetic organism design 
would significantly enhance researchers’ abilities to rapidly generate organisms with 
novel capabilities and functions. Realization of this goal is non-trivial given the 
complexity of living systems and the difficulty of predicting synthetic part behavior in the 
context of complete cellular systems.  Nonetheless, progress has been made towards 
the development of such tools, and improvements are expected to continue as the 
understanding of biological design principles improve. This poster presents a 
hypothetical synthetic organism design architecture (SODA) for end-to-end engineering 
of synthetic systems. The purpose of this poster is to evaluate what system-level 
capabilities are required for synthetic organism design, analyze the state of the art for 
existing capabilities, and evaluate key areas for future research. In analyzing the 
proposed architecture, the poster also discusses research conducted by the authors in 
developing tools for automatic protein engineering. 
 
The proposed synthetic organism design architecture (SODA) is illustrated in Figure 
1.  As this figure indicates, the architecture takes as input the desired system function 
and proposed components. Here, input functionalities can range from chemical 
synthesis, to sensing, to information processing, to bioremediation and generation of 
bioelectricity. The inputs also include a set of existing synthetic parts, expected 
connectivity between these parts, and the desired organism chassis. Using these 
inputs, the SODA ultimately returns a set of synthetic parts which achieve the desired 
functionality within the given cellular system. Finding this set of parts requires the 
various modules which are depicted in Figure 1.  These modules are responsible for 
part selection, part generation, pathway modeling, and parameter optimization. The 
design process also requires information from various biological and parts databases. It 
is expected that the system will be iterative and fully autonomous. Thus the SODA is 
expected to be able to automatically determine which functionalities are needed for 
completing system design, find and generate these parts based on existing databases, 
and evaluate if the selected set of parts will have the desired activity.  If the parts do not 
have the desired activity, then the SODA is expected to determine which parameters 
should be modified to give the desired activity based on previous design concepts and 
then repeat the part selection, generation, and evaluation process based on these 
parameters.  Figure 1 also reflects the expected reality that computationally designed 
synthetic systems will ultimately require experimental verification.  
 
Along with describing an idealized concept for synthetic organism design, the poster 
also evaluates the current state of the art for the various databases and design 
modules.  For the design modules, specific computational tools are analyzed that could 
potentially be used for completing each task. This includes computational methods for 
automatically selecting parts, engineering biomolecules with specific capabilities, 
analyzing the function of cellular pathways, and evaluating how a set of synthetic parts 
will alter other pathways within the chassis. Through analyzing such capabilities, 



conclusions can be made regarding areas where major capability gaps exist in 
computational tools for synthetic system design.  While some of these capabilities are 
very challenging areas (e.g., de novo protein design for a specific function), others are 
likely achievable in the near term (e.g. re-engineering a protein for a novel but related 
function). Research being conducted at MITRE to automatically engineer enzymes with 
specific functions is highlighted to show how some of these gaps are being addressed. 
Ultimately, the set of capability gaps provides a detailed roadmap for key areas where 
future research should be conducted for enabling automatic synthetic organism design.  
 
Altogether, the goals of the proposed synthetic organism design architecture are to 
facilitate further discussion, understanding, and development of methods for 
automatically engineering synthetic organisms and to foster integration and 
interoperability between technologies developed by the synthetic biology community. 
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Purpose

We are working to make the engineering of biology easier.  One aspect of our work is to 
develop an increased capacity  to refine and standardize large numbers of natural 
genetic sequences. The primary goals of such refinements are to improve the physical 
and functional composition of the resulting objects, as per Canton et al. [PMID: 
18612302].   We also want to enable many people to more readily and accurately 
produce high quality  standard biological parts; such parts collections are needed to 
make real the designs produced using higher-level synthetic biology  software design 
tools.   Thus, we developed open-source software that supports the automated 
conversion of non-standard natural genetic sequences into simpler standard biological 
parts.

Methods

The software, which we named Sequence Refiner, is comprised of client and web 
service components; the Sequence Refiner Client and the Sequence Refiner Service, 
respectively.  The client can read in DNA sequences encoded in Genbank format.  The 
sequences are transmitted to the Sequence Refiner Service via an HTTP POST request 
from the client to the server.   The server modifies the incoming sequences in 
accordance with one or more refinement standards.  Presently, BioBricks Foundation 
Physical Assembly Standards #10, 12, 21, and 25 are supported.   Most existing 
standards require refinements that are synonymous changes of codons in a DNA 
sequence.  The selection of alternate codons can be customized to be consistent with a 
particular codon preference scheme.  For example, codon preference based on tRNA 
abundance [Ikemura; PMID: 6175758] is implemented; random silent substitutions may 
also be selected.   The Sequence Refiner client is an Adobe Flex application that 
executes via the Flash Player that is installed in all major web  browsers.  The Sequence 
Refiner service is a RESTful web service written in Java and uses J2EE and BioJava 
packages. The Sequence Refiner service is hosted at Google App Engine.  The source 
code for Sequence Refiner is open and freely available (please see  http://
www.biofab.org/software for distribution information).

Results

Preliminary testing of the Sequence Refiner demonstrates sequence refinements in the 
millisecond to second timescale.  The resulting sequences are fully compliant with the 
BBF physical assembly  standards noted above.   The Sequence Refiner can thus 

http://www.biofab.org/software
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replace the manual editing of sequences that requires tens of minutes and is prone to 
human error.

Conclusions

Sequence refinement has the potential to increase the quantity and quality of standards 
compliant DNA sequences.  The Sequence Refiner supports the goal of making biology 
easier to engineer.
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Abstract	
  
	
  
The	
  goal	
  of	
  this	
  work	
  is	
  to	
  develop	
  computational	
  and	
  statistical	
  tools	
  to	
  enable	
  
uncertainty	
  quantification	
  of	
  neural	
  simulations.	
  	
  We	
  extend	
  fourier-­‐based	
  
techniques	
  to	
  use	
  experimental	
  data	
  in	
  the	
  refinement	
  of	
  neuron	
  simulations	
  
parameters	
  and	
  topology.	
  
	
  
Computer	
  simulations	
  of	
  neural	
  activity	
  are	
  valid	
  constructs	
  within	
  a	
  restricted	
  
operating	
  regime.	
  	
  	
  This	
  work	
  calculates	
  limits	
  or	
  bounds	
  within	
  which	
  one	
  can	
  be	
  
confident	
  that	
  a	
  simulation	
  is	
  dynamically	
  behaving	
  in	
  the	
  same	
  manor	
  as	
  an	
  
experiment.	
  To	
  that	
  end	
  we	
  have	
  implemented	
  common	
  neurological	
  ion-­‐channel	
  
models	
  (e.g.	
  Hodgkin-­‐Huxley,	
  Connor-­‐Stevens)	
  in	
  a	
  dynamic	
  cable-­‐equation	
  format	
  
within	
  a	
  circuit	
  simulator,	
  Xyce	
  (xyce.sandia.gov);	
  see	
  simulation	
  outline	
  below.	
  	
  
This	
  allows	
  one	
  to	
  use	
  a	
  netlist	
  style	
  syntax	
  to	
  describe	
  a	
  collection	
  of	
  neurons	
  for	
  
simulation.	
  	
  As	
  with	
  any	
  circuit	
  simulation,	
  the	
  model	
  parameters	
  for	
  the	
  circuit	
  
components	
  are	
  critical	
  in	
  determining	
  the	
  circuit’s	
  performance.	
  	
  
	
  
Experimental	
  data	
  from	
  micro-­‐electrode	
  array	
  recordings	
  on	
  hippocampus	
  cell	
  
cultures	
  (data	
  courtesy	
  of	
  B.	
  Wheeler	
  &	
  D.	
  Khatami,	
  U.	
  of	
  Florida)	
  were	
  used	
  to	
  
bound	
  the	
  simulation	
  parameters.	
  	
  	
  Specifically,	
  transient	
  data	
  from	
  the	
  simulations	
  
is	
  compared	
  to	
  micro-­‐electrode	
  array	
  data.	
  	
  However,	
  direct	
  comparison	
  cannot	
  be	
  
made	
  between	
  the	
  experimental	
  and	
  simulation	
  data	
  in	
  the	
  transient	
  domain	
  
because	
  of	
  the	
  unknown	
  initial	
  condition	
  state	
  of	
  the	
  experiments	
  and	
  the	
  unknown	
  
topology	
  of	
  the	
  experimental	
  system.	
  	
  Two	
  approaches	
  are	
  taken	
  to	
  mitigate	
  these	
  
problems.	
  	
  First,	
  by	
  transferring	
  the	
  results	
  to	
  a	
  frequency	
  domain	
  and	
  constructing	
  
a	
  power-­‐spectra,	
  one	
  can	
  compare	
  the	
  two	
  sets	
  of	
  data	
  and	
  infer	
  important	
  
properties.	
  	
  Differences	
  between	
  the	
  simulated	
  and	
  experimental	
  power-­‐spectra	
  
allow	
  one	
  to	
  both	
  optimize	
  the	
  fit	
  of	
  the	
  simulation	
  to	
  the	
  experiments	
  and	
  calculate	
  
the	
  uncertainty	
  allowed	
  in	
  the	
  simulation's	
  model	
  parameters.	
  	
  Second,	
  since	
  the	
  
underlying	
  cellular	
  topology	
  is	
  unknown	
  for	
  the	
  experimental	
  system,	
  random	
  
topologies	
  (and	
  some	
  directed	
  topologies	
  for	
  verification)	
  are	
  generated	
  and	
  used	
  in	
  
the	
  simulation.	
  	
  Thus,	
  both	
  the	
  model	
  parameter	
  space	
  is	
  searched	
  and	
  the	
  circuit	
  
topology	
  space	
  is	
  searched	
  for	
  systems	
  that	
  dynamically	
  mimic	
  the	
  experiments.	
  
	
  
This	
  allows	
  one	
  to	
  quantify	
  what	
  is	
  unknown	
  or	
  unrepresented	
  in	
  both	
  the	
  
experiments	
  and	
  simulations	
  leading	
  to	
  a	
  better	
  understanding	
  of	
  both	
  results.	
  	
  	
  As	
  



expected,	
  low-­‐fidelity	
  data	
  can	
  be	
  matched	
  with	
  a	
  low	
  fidelity,	
  or	
  simple	
  model.	
  	
  
When	
  the	
  experimental	
  system	
  becomes	
  more	
  complex	
  (i.e.	
  exhibits	
  long	
  term	
  
potentiation)	
  more	
  complex	
  models	
  are	
  needed	
  to	
  fully	
  describe	
  the	
  data.	
  	
  	
  
	
  
Finally,	
  because	
  the	
  computational	
  process	
  can	
  be	
  automated,	
  tens	
  to	
  thousands	
  of	
  
simulation	
  parameters	
  and	
  or	
  topologies	
  can	
  be	
  tested	
  for	
  their	
  sensitivity	
  on	
  the	
  
results.	
  	
  To	
  confront	
  the	
  geometric	
  scaling	
  for	
  simulation	
  needs,	
  we	
  utilize	
  a	
  
hierarchial	
  parallel	
  simulator.	
  Xyce	
  can	
  run	
  on	
  multiple	
  processors	
  in	
  a	
  distributed	
  
or	
  shared	
  memory	
  system	
  and	
  the	
  uncertainty	
  quantification	
  controller,	
  Dakota,	
  can	
  
control	
  and	
  dispatch	
  multiple	
  jobs	
  in	
  parallel.	
  	
  Thus,	
  one	
  can	
  efficiently	
  utilize	
  a	
  
computing	
  cluster	
  where	
  each	
  compute	
  node	
  has	
  multiple	
  cores	
  and	
  there	
  are	
  
multiple	
  compute	
  nodes.	
  
	
  
We	
  will	
  present	
  results	
  comparing	
  simulated	
  and	
  experimental	
  systems	
  under	
  both	
  
un-­‐stimulated	
  and	
  post-­‐stimulation	
  conditions.	
  	
  Uncertainty	
  quantification	
  for	
  the	
  
Hodgkin-­‐Huxley	
  and	
  more	
  complex	
  Connor-­‐Stevens	
  neuron	
  models	
  indicates	
  that	
  
sodium	
  and	
  potassium	
  ion	
  conductance	
  terms	
  are	
  critical	
  for	
  this	
  experimental	
  
system.	
  	
  We	
  will	
  include	
  bounds	
  within	
  which	
  the	
  simulations	
  are	
  relevant	
  and	
  
discussion	
  of	
  scalability	
  to	
  larger	
  systems.	
  
	
  

	
  
Simulation	
  and	
  Uncertainty	
  Quantification	
  Loop:	
  	
  Experimental	
  system	
  and	
  typical	
  

transient	
  data	
  show	
  at	
  top.	
  	
  Sample	
  power	
  spectra	
  shown	
  on	
  lower	
  right	
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EXTENDED ABSTRACT 

Recent research efforts in bioinformatics and computational 

biology focus on gaining a deeper insight into cell death processes, 

allowing researchers to study the relation between the malfunction of 

apoptosis and development of human diseases such as cancer. The 

apoptosis process involves a complex system of pathways that includes 

different proteins and signals [2][3][4][5][6]. Constructing the 

pathways as a finite state transition model (FSM) provides a unique 

level of abstraction allowing analytical algorithms to be applied to the 

study of this model. One such recent work is the modeling of the 

mitochondrially mediated apoptotic signaling pathways as a discrete 

transition system model [1]. This framework can model healthy as well 

as slightly altered, or faulty, signaling pathways. Subsequently, digital 

system verification and testing techniques developed in the EDA 

domain can thus be used to aggressively analyze the model. 

The inputs to the apoptosis FSM consist of all external substrates 

that assist the reaction. These include: Granzyme B, Caspase 8, NMT1, 

BCL_XL, etc. Mitochondria and Cytoplasm, acting as assembly sites 

for many of the pro-apoptotic and anti-apoptotic factors have also been 

take into consideration in the buildup of this full system FSM. Eight 

state elements (flip-flops) have been used for each protein to represent 

its state, or in other words, its concentration in the system. The rate 

constants and concentrations are modeled in such a way that a unit 

increment in the state value denotes an increment of 0.1 nano-molar in 

protein concentration. Hence, concentration value modeled is 0 to 25.5 

nano-molar corresponding to 0 to 255 state range.  

An initial attempt using a simple combination of guided logic 

simulation, Bounded Model Checking (BMC) [7], and simple SAT-

based induction [8] has been used to find a subset of reachable states in 

the apoptosis Model. SAT-based Induction has also been used to 

identify a subset of illegal states in the FSM. However, the results of 

such a simple, straight-forward analysis on this model, as discussed in 

[1], reveal the inadequacy of the approach. While these techniques do 

well in classifying the states to a certain extent, many states of different 

proteins could neither be reached nor proven illegal.  

Therefore, in this work, we attempt to gain insight into the 

apoptosis model by finding out the nature of these unknown states. We 

propose an image computation based methodology, in which both the 

reached and proven unreachable states of various proteins will be used 

in our formulation. Our contributions can be summarized as follows: 

a. Categorization of 93% of previously unknown individual protein 

states as illegal states with our new formulation. 

b. Extension of our framework to efficiently study the interaction of 

any two proteins in the apoptosis system. 

 

PROPOSED METHODOLOGY 
Circuit abstraction has shown to be a promising approach for 

Model Checking [9]. We first tackle the problem of proving those 

unknown states as illegal by proposing a new methodology based on 

SAT based image computation of the abstract circuit. We refer to the 

core procedure of our framework as extract_illegal( ). We 

methodically constrain the one time-frame apoptosis circuit as follows: 

1. Constrain the target protein at the Pseudo Primary Inputs (PPI) to 

be in the current set of reachable states as obtained from the 

simulation trace of the concrete model. 

2. Constrain the target protein at the Pseudo Primary Output (PPO) 

to be outside the current reachable state set. This ensures that if 

the SAT Solver returns a satisfying solution, a new reachable state 

in the abstract circuit is obtained and it can be added to the 

reachable state set to constrain the search in the next iteration. 

3. Use the illegal states learned till now for all proteins to constrain 

both the PPI and PPO. 

Figure 1 shows the progress of learning illegal states of different 

proteins with iterative calls to extract_illegal( ). A single iteration 

consists of learning illegal states for all the proteins. We follow an 

order from protein1 (BCL2) to protein8 (tBID_cyto) regarding the calls 

to this function. The graph also shows the influence of different 

proteins on one another in terms of defining their illegal states. 

Table 1 is a summary of results regarding the learning of new 

illegal states in this apoptosis model. These encouraging results further 

help us to analyze protein combinations as discussed in the next 

section. 

STUDY OF PROTEIN COMBINATIONS 
Analyzing two-protein interactions with a better knowledge of the 

illegal state space becomes viable now. Explicit enumeration of two 

protein states will simply be infeasible because of the large number of 

SAT solver calls involved. Instead, we branch on the most-significant 

bits (MSB) to reduce the search. Let us consider a state 

1101xxxx1100xxxx. The first 8 bits belong to protein A and last 8 bits 

belong to protein B. Obtaining the state 1101xxxx1100xxxx as an 

illegal state specifies that any state between 208 to 223 of protein A 

together with any state between 192 to 207 of protein B would form an 

illegal state combination. The number of MSBs is investigated to study 

the trade-offs between performance and quality of result. 

Here, we give an example which specifies the importance of the 

MSB learning approach. BCL2 and tBID_mito have 12876 states as 

possibly legal. When we first perform the 4 MSB learning, we obtain a 

graph as shown in Figure 2, which indicates that there is scope of 

learning more illegal states in such cases where crude blocks of illegal 

states are obtained. 

More illegal states are learned with 5 MSB learning as shown in 

Figure 3. The illegal states learned earlier in 4 MSB learning are used 

as constraints to reach results faster. Table 2 shows a summary of 

results obtained with the analysis of two protein combinations. These 

results demonstrate the feasibility and potential of the proposed 

approach. 
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Figure 1: Progress of learning illegal states  

 

Table 1: Results obtained on individual proteins 

Proteins Reachable 

States 

Illegal 

States 

Unknown 

States 

BCL2 1 to 125 0, 126 to 

255 

NA 

BAD_mito 0 to 10 17 to 255 11 to 16 

BAD_p14 0 to 250 251 to 255 NA 

BAD_cyto 0 to 238 239 to 255 NA 

BAD_BCL2 0 to 235 ? 236 to 255 

tBID_mito 1 to 103 0, 124 to 

255 

104 to 123 

tBID_BCL2 139 to 252 0 to 127, 

253 to 255 

128 to 138 

tBID_cyto 0 to 11 12 to 255 NA 

 

 

 
Figure 2: 4 MSB learning for BCL2 and tBID_mito showing the 

reduced resolution of illegal states learned (dark color). 

 

Table 2: Protein Combination analysis 

Protein Combination Illegal States 

BCL2 with tBID_cyto 658 out of 1500 

BCL2 with tBID_mito 9233 out of 12876 

BAD_mito with BAD_cyto 524 out of 2618 

tBID_mito with tBID_cyto 728 out of 1236 

 

 
Figure 3: 5 MSB learning refines and adds to the illegal states 

obtained from 4 MSB learning for proteins BCL2 and tBID_mito. 
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