
Module Locking in Biochemical Synthesis

Brian Fett and Marc D. Riedel

Department of Electrical and Computer Engineering

University of Minnesota

200 Union St. S.E., Minneapolis, MN 55455

{fett, mriedel}@umn.edu

Abstract—We are developing a framework for computation
with biochemical reactions with a focus on synthesizing specific
logical functionality, a task analogous to technology-independent
logic synthesis. Our method synthesizes biochemical reactions
that compute output quantities of molecular types as a function
of input quantities, either deterministically or probabilistically.
An important constraint is the timing, captured in the relative
rates of the biochemical reactions: all the outputs of a given phase
must be produced before the next phase can begin consuming
them as inputs. To achieve this synchronization, the reaction rates
must sometimes be separated by orders of magnitude: some much
faster than others, some much slower. This might be costly or
infeasible given a specific library of biochemical reactions.

In this paper, we describe a novel mechanism for locking the
computation of biochemical modules – analogous to handshak-
ing mechanisms in asynchronous circuit design. With locking,
our method synthesizes robust computation that is nearly rate
independent, requiring at most two speeds (“fast” and “slow”).
The trade-off is with respect to the size of the solution: more
reactions are needed. We characterize this trade-off for inter-
and intra-module locking in general and for a variety of specific
modules that we have designed. In particular, we discuss locking
in detail for a stochastic module that implements probabilistic
computation, producing different combinations of molecular
types according to specified probability distributions.

I. INTRODUCTION

A. Bio-Design Automation

In the nascent field of synthetic biology, practitioners are

striving to create new form and functionality in biological

systems through genetic manipulations. Recent accomplish-

ments portend a coming revolution in the biosciences. From

Salmonella that secretes spider silk proteins [26], to yeast that

degrades biomass into ethanol [22], to E. coli that produces

antimalarial drugs [21], the potential impacts are far-reaching.

Still in its early stages, the field has been driven by experi-

mental expertise; the remarkable exploits are attributable to the

skill of the researchers in specific domains of biology. There

has been a concerted effort to assemble repositories of stan-

dardized components [3]. However, creating and integrating

synthetic components remains an ad hoc process.

The field of synthetic biology is now reaching a stage where

it calls for computer-aided design tools (an effort dubbed “bio-

design automation” [19]). The EDA community has unique

expertise to contribute to this endeavor. As with integrated

circuits, the key in synthetic biology is to develop design

flows that systematically explore configurations at different

levels of abstraction. Randomness is inherent to biochemistry:

at each instant, the sequence of reactions that fires is a matter

of chance. We argue that biochemical design problems can be

cast in terms of discrete, probabilistic computation performed

on protein quantities.

In prior work, we have described a modular framework for

synthesizing computation with biochemical reactions – per-

forming a task for synthetic biology analogous to technology-

independent logic synthesis in circuit design [6]. This includes

a flexible toolkit of functional modules for standard arithmetic

operations (analogous to those performed by an ALU) as

well as regulatory functions (analogous to those performed

by control circuitry).

B. Timing in Biochemical Computation

An important constraint in our design methodology is

the timing, captured in the relative rates of the biochemical

reactions. Both for intra- and inter-module computation, strict

synchronization is often required: all the outputs of a given

phase must be produced before the next phase can begin

consuming them. To achieve this synchronization, the reaction

rates must sometimes be separated by orders of magnitude:

some much faster than others, some much slower. This might

be costly or infeasible given a specific library of biochemical

reactions. Consider the following basic design problem:

Example 1

Suppose that we wish to design a multiplication module: a set

of biochemical reactions that produces an output quantity of a

type z that is proportional to the input quantities of both type

x and type y,

|z| = |x| · |y|.

(We use the notation | | to refer to the quantity of the corre-

sponding type.) The following set of reactions accomplishes

this [6]:

x
slowest
−→ a

a + y
fastest
−→ a + y′ + z

a
fast
−→ ∅

y′
slow
−→ y.

(1)

The notation −→ simply specifies a rule regarding how types

of molecules, designated as the reactants, combine to produce

other types, designated as the products, e.g., “two of hydrogen”

and “one of oxygen” combine to produce “one of water”.

The rates are relative: if a “fast” reaction can fire, it is

assumed to do so – repeatedly, until it runs out of reactants

– before a “slow” reaction ever fires. Depending on the

quantities involved, and the accuracy that is called for, an order

of magnitude difference between two rate categories might

suffice. Typically, it would be several orders of magnitude.

Here a and y′ are intermediate types; it is assumed that no

molecules of these types are present initially. (The symbol

∅ as a product indicates “nothing”, meaning that the type

degrades into products that are no longer tracked or used.)

To see that these reactions implement multiplication, note

that no reaction can fire until the first one does, producing

a molecule of type a. When it does, it initiates an iteration

of a loop: the quantity of z increases as the second reaction

fires repeatedly until there is no more y remaining. Once

this process terminates, the third and fourth reactions fire,

ending the iteration and restoring y to its initial value. In each

iteration, the quantity of x is decremented by one and the

quantity of z is incremented by y. The final result is a quantity

of z equal to the initial quantity of x times the initial quantity

of y. �

Now suppose that we wanted to use this multiplication mod-

ule as part of a larger computation, say that of a polynomial.

Suppose that the operands x and y are produced by other

modules. There is no issue if x trickles in as the multiplication

is being performed; the computation will loop the correct

number of times regardless. However, the full quantity of

y must be present at the start; otherwise, the result of the

computation will be incorrect.

Two solutions to this problem exist. The first is to enforce

the synchronization by having earlier stages in the computation

complete much faster than later stages: given two modules,

the first producing an input for the second, one must select

reactions such that the initiating reaction of the first module

is much faster than in the second. Although typically there is

considerable leeway to choose among reactions with differing

rates, this solution clearly does not scale well.

C. Module Locking

In this paper, we discuss a more efficient scheme for

synchronization that we call locking. It entails adding reactions

involving a specific molecular type to each module – the

module’s key. Without the key, the sequence of reactions in

the module is prevented from firing. Each module’s key is

produced by a reaction involving another type – the module’s

keysmith. The keysmiths for the different modules are pro-

duced slowly and randomly. When one pops into existence,

it is generally consumed by another reaction involving types

called indicators. If none of these indicators are present, then it

is this module’s turn to execute. Only then does the keysmith

produce the key for the corresponding module. The set of

reactions are:

∅
slow
−→ keysmith

keysmith
slow
−→ key

keysmith + indicator
fast
−→ indicator.

(2)

(The symbol ∅ as a reactant indicates that the reaction does

not alter the quantity of the reactant types, perhaps because

the quantity of these is large or replenishable; in such cases

we can assume that the quantity is simply unity and adjust

the rate accordingly). If there are multiple input dependencies

in a module, we will need an indicator and an associated

reaction for each. The first reaction of a locked module must

be modified so that it depends on the key:

key + reactants → products + key. (3)

Typically, the key will be a catalyst, appearing as both a

reactant and a product, but this need not be the case.

This mechanism for locking is, in fact, analogous to hand-

shaking mechanisms in asynchronous circuit design, with the

creation of a keysmith acting as a probe and the generation

of a key being an affirmative response [15]. With locking,

our method synthesizes robust computation that is nearly rate

independent, requiring at most two speeds (“fast” and “slow”).

The trade-off is with respect to the size of the solution: more

reactions are needed. We characterize this trade-off: for inter-

module locking, for intra-module locking on a variety of

examples, and for the stochastic module specifically.

II. BACKGROUND

A. Discrete Biochemistry

Interesting biochemistry typically involves complex

molecules such as proteins and enzymes. Within the

confines of a cell, the quantities of such molecules are

often surprisingly small: on the order of tens, hundreds,

or thousands of molecules of each type. At this scale,

individual reactions matter, and the problem must be analyzed

discretely [8]. The complexity stems from the dynamics at

play among the multitude of coupled reactions. Randomness

is inherent: at each instant, the exact sequence of reactions

that fires next is a matter of chance.

[3, 3, 3]

[3, 3, 3]

[1, 5, 4]

[2, 2, 6]

R
1

R
2

R
3

start

Fig. 1. Biochemical Reactions as Discrete Events – Beginning from the state
[3, 3, 3], R1 fires, followed by R2, followed by R3.

Example 2

Consider a system with three types of molecules x1, x2, and

x3. The state of the system is described by

[|x1|, |x2|, |x3|],

where |x1|, |x2|, and |x3| are the numbers of molecules of

types x1, x2, and x3, respectively, as non-negative integer

quantities. For instance, the system might be in the state

[3, 3, 3] with three molecules of each type. Consider the three

reactions:

R1 : x1 + x2 → 3x3

R2 : x1 + 2x3 → 3x2

R3 : 2x2 + x3 → 2x1.

Note that these reactions are coupled: the types appear both as

reactants and as products in different reactions. Suppose that

the system is in the state [3, 3, 3] and reaction R1 fires. One

molecule of type x1 and one of type x2 are consumed; three

of type x3 are produced. This results in the state transition:

[3, 3, 3]
R1−−−−−−→ [2, 2, 6].

As reactions fire, a cellular process follows a sequence of such

transitions. Figure 1 illustrates the trajectory taken from the

state [3, 3, 3] by the sequence R1, R2, and R3. �

B. Probabilistic Biochemistry

Ignoring environmental changes outside the cell, one can

assume cellular biochemistry behaves as a Markov process: the

probability of future events depends only on the present state

of the cell. Indeed, at each point in time, the probability of a

given reaction firing is a function of the quantities of different

types of molecules present. Specifically, it is proportional to:

• the number of ways that the reactants can come together,

• and the reaction rate.

Although we will often refer to rates in relative and qualitative

terms – e.g.,“fast” vs. “slow” – these are, in fact, real-valued

parameters that are either deduced from biochemical principles

or measured experimentally [10].

Example 3

Suppose that the system in Example 2 is in the state S =
[3, 4, 5]. There are

3 × 4 = 12, 3 ×

(

5

2

)

= 30,

(

4

2

)

× 5 = 30

ways to choose the reactants of R1, R2, and R3, respectively.

Suppose that the rates of reactions R1, R2, and R3 are 1, 2

and 3, respectively. Then the firing probabilities for R1, R2,
and R3 are

12 × 1

162
= 0.074,

30 × 2

162
= 0.370,

30 × 3

162
= 0.556,

respectively. �

Randomness has been well characterized in biological sys-

tems [13], [17]. Certain biochemical systems appear to exploit

randomness, choosing between different outcomes with a

probability distribution – in effect, hedging their bets with a

portfolio of responses. Examples include the pap pili epige-

netic response of bacteria [11], the lentiviral positive-feedback

loop in the HIV virus [25], and the lysis/lysogeny switch of

the lambda bacteriophage [1].

Computationally, such discrete probabilistic biochemical

systems are characterized through Monte Carlo simula-

tion [8], [7], [14]. Beginning from an initial state, reactions

are chosen at random, based on propensity calculations. As

reactions fire, the quantities of the different species change

by integer amounts. Repeated trials are performed and the

probability distribution of different outcomes is estimated by

averaging the results.

C. Synthesizing Probabilistic Behavior

As in natural systems, randomness plays a pivotal role

in synthetically engineered systems. Prior work discussed a

method for designing a set of biochemical reactions that

produces different combinations of molecular types accord-

ing to a specified probability distribution [6]. Here is an

abbreviated description of a stochastic module. Suppose that

we are targeting n distinct outcomes, characterized by the

mutually exclusive production of types O1, . . . , On according

to a probability distribution. For i from 1 to n, we have five

reactions:

∀i : ei
slow
−→ di

∀i : di + ei
fast
−→ 2di

∀i 6= j : di + ej
fast
−→ di

∀i 6= j : di + dj
fastest
−→ ∅

∀i : di
slow
−→ di + Oi

(4)

For each i, the first reaction in the set initiates the response

by producing a catalyst type di. Among the i, the first one

to fire this way generally determines the outcome. The other

reactions ensure that once this first reaction fires, producing a

molecule of di, this choice quickly wins out: the production

of more molecules of di is encouraged, while the production

of the other types dj , j 6= i, is strongly inhibited. So the firing

probabilities for the initializing reactions at the outset dictate

the probability distribution of the final outcome.

The response to this system is precise and robust to pertur-

bations. Furthermore, it is programmable: the probability dis-

tribution is a function of the quantities of input types [6]. Our

contribution is design automation for biochemical synthesis at

the level of abstract arbitrary types (a, b, c, etc.) – “technology-

independent synthesis.” The solution is then mapped to specific

types and reactions from a suitable toolkit [3], [5].

III. MODULE LOCKING

We discuss schemes for locking the looping mechanisms

in modules as well as locking successive modules that are

chained together. We also discuss specifically an efficient

scheme for locking the stochastic module.

A. Intra-Module Locking

Most of the modules found in [6] behave similarly to that

in Example 1: there is a looping construct that iteratively

works toward the correct answer. In all such modules, it is

important that the reactions fire in the correct order. In addition

to unlocking the reactions when it is time for them to execute,

we must also have the ability to “re-lock” them when it is

time for them to stop executing.

Our scheme involves adding a key requirement to most of

the reactions in the loops of modules. Keysmiths are produced

occasionally; if other keys are present, they quickly disappear

– before they can produce their key. Only if no other keys

are present will they produce their key. This ensures that at

most one type of key is present (thus allowing only one part

of the loop to fire at a time); also it ensures that only one

key of that type is present (thus allowing for re-locking).

The set of reactions for this functionality is:

∀i : ∅
slow
−→ keysmithi

∀i : keysmithi

slow
−→ keyi

∀i : keyi

slow
−→ ∅

∀i, j : keyi + keysmithj

fast
−→ keyi.

(5)

Example 4

Figure 2 gives a locked version of the multiplication

module in Example 1. The lines separate the reactions into

three sets: the original reactions, the generic module-locking

reactions, and some locking reactions specific to this example.

1) In the first set, notice that we do not add a lock to the

second reaction; this is because the reaction is already

locked by the “looping” type a. Notice, also, that the first

and third reactions destroy the keys that they require.

This prevents them from firing more than once. The

fourth reaction does not destroy its key, since it fires

repeatedly.

2) In the second set, the first three reactions produce

the appropriate keysmiths; the next three allow those

keysmiths to create keys; the next three cause keys that

are no longer needed to disappear; the next nine ensure

that there are no keysmiths left to create keys when there

is already one in the system.

3) In the third set, the reactions ensure that no incorrect

key will be produced. What is required here is that the

keysmith of a locked reaction not appear when any of

the other (related) locked reactions could be firing.

�

In general, most modules employing looping constructs will

have four parts to the loop: a loop initiator, loop actions, a loop

closer, and a loop reset. The loop actions are all reactions

that require, but do not destroy, the looping type (a in the

example above); no changes need to be made to lock these

reactions. The loop initiator creates the looping type, while

the loop closer destroys it. Both of these parts require a key

that is destroyed by the reactions because they should only

key1 + x
slow
−→ a

a + y
slow
−→ a + y′ + z

key2 + a
slow
−→ ∅

key3 + y′
slow
−→ key3 + y

∅
slow
−→ keysmith1

∅
slow
−→ keysmith2

∅
slow
−→ keysmith3

keysmith1

slow
−→ key1

keysmith2

slow
−→ key2

keysmith3

slow
−→ key3

key1

slow
−→ ∅

key2

slow
−→ ∅

key3

slow
−→ ∅

key1 + keysmith1

fast
−→ key1

key1 + keysmith2

fast
−→ key1

key1 + keysmith3

fast
−→ key1

key2 + keysmith1

fast
−→ key2

key2 + keysmith2

fast
−→ key2

key2 + keysmith3

fast
−→ key2

key3 + keysmith1

fast
−→ key3

key3 + keysmith2

fast
−→ key3

key3 + keysmith3

fast
−→ key3

keysmith1 + y′
fast
−→ y′

keysmith1 + a
fast
−→ a

keysmith2 + y
fast
−→ y

keysmith3 + a
fast
−→ a.

Fig. 2. A “Locked” Version of the Multiplication Module from Example 1.

occur once per loop. The loop-reset reactions do not involve

the loop type in any way; each will require a third, shared key,

but they need not destroy it.

Both generic module locking reactions (i.e., those in Equa-

tion 5) as well as some reactions specific to the module must

be added. These include reactions for:

• destroying the keysmith for the loop initiator if the

looping molecule is present,

• destroying the keysmith for the loop initiator if any loop

reset reactions can fire,

• destroying the keysmith for the loop closer if any loop

actions can take place,

• destroying the keysmith for the loop reset reactions if the

looping molecule is present.

With these modifications, the only requirement on the rate

of the reactions is that all reactions that destroy a keysmith be

“fast” and the others “slow.”

Figure 3 compares the accuracy of the locked vs. unlocked

versions of various functional modules using different separa-

tions in the rate constants. For the unlocked version, we used

the rates 1, λ, λ2, and λ3 as the values for “slowest,” “slow,”

“fast,” and “fastest.” For the locked modules, we used 1 and

λ for “slow” and “fast.” Note that the total range of rates in

the unlocked case is λ3. For a fair comparison, we defined the

“accuracy gain” for the scheme to be the error of the unlocked

method at λ = 10 divided by the error of the locked scheme

at λ = 1000, since both sets of reactions would then require

that the fastest reaction be 1000 times faster than the slowest.

Multiplication: 10 × 10
%error

λ unlocked locked

1 77.75% 48.46%

10 27.07% 24.67%

100 4.20% 3.09%

1000 0.45% 0.33%

10000 0.05% 0.02%

of reactions 4 26

Accuracy gain: 82.03×

Exponentiation: 25

%error

λ unlocked locked

1 75.02% N/A

10 18.027% N/A

100 2.37% 33.72%

1000 0.25% 2.58%

10000 0.02% 0.26%

of reactions 4 26

Accuracy gain: 6.99×

Logarithm: log2(64)
%error

λ unlocked locked

1 267.03% 169.99%

10 41.36% 69.89%

100 5.24% 11.57%

1000 0.53% 1.27%

10000 0.05% 0.14%

of reactions 6 30

Accuracy gain: 32.56×

Fig. 3. A Comparison of the Accuracy of the Locked and Unlocked Versions
of Three Modules: Multiplication, Exponentiation, and Logarithm.

It is interesting to note that the unlocked versions of

multiplication and exponentiation tend to under-compute the

result, whereas our locked versions tend to over-compute it.

This is because, in the unlocked case, the error that occurs is

removing the loop molecule prematurely; in the locked case,

the error comes from allowing the loop to reset while active.

B. Inter-Module Locking

To implement more complex biochemical computation, the

simple modules outlined in [6] can be nested, with one module

performing an arithmetic operation on an input and passing it

to the next module. This generally requires the first module

to complete execution prior to the second starting. As we

suggested in the introduction, this either necessitates multiple

speeds or else locking.

The first step for module locking is to identify all molecular

types that indicate that the locked module should not be firing.

Then, the reactions outlined in Equation 2 are added. Finally,

the loop-initiator reaction is changed so that it requires the

appropriate key, that is, one that will not be produced in

the presence of the specified indicators. We illustrate with an

example.

Example 5

Consider the simple case of a “linear” module,

|y| = |x|.

Suppose that the output of this module is the input to a

stochastic module that produces an outcome A with prob-

ability p1 = y/100 and an outcome B with probability

p2 = (100 − y)/100. Without locking, the reactions are:

x
fast
−→ y

y + e2

fast
−→ e1

e1

slow
−→ d1

e2

slow
−→ d2

e1 + d1

fast
−→ 2d1

e2 + d2

fast
−→ 2d2

d1 + d2

fastest
−→ ∅

d1+
slow
−→ d1 + A

d2+
slow
−→ d2 + B.

(6)

Here e1 and e2 are initialized to 0 and 100, respectively.

Modifying the reactions such that the stochastic module is

locked until the linear module completes, the reactions are:

x
slow
−→ y

y + e2

slow
−→ e1

key + e1

slow
−→ key + d1

key + e2

slow
−→ key + d2

e1 + d1

fast
−→ 2d1

e2 + d2

fast
−→ 2d2

d1 + d2

fastest
−→ ∅

d1+
slow
−→ d1 + A

d2+
slow
−→ d2 + B

∅
slow
−→ keysmith

keysmith
slow
−→ key

x + keysmith
fast
−→ x

y + keysmith
fast
−→ y.

(7)

Here we have added four reactions, two for the key generation

and one for each of the indicator molecules, x and y.

Figure 4 compares the locked version to the original version.

Curves of the probabilistic response for outcome A are plotted

for different rates. We see how effective locking is, even if

“fast” is only twice as fast as “slow.” �

Similar examples are shown for both logarithm and expo-

nentiation in Figure 5 and Figure 6, respectively. While the

low quantities involved in the logarithm example do not play to

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
ro

b
ab

il
it

y
 o

f
O

u
tc

o
m

e
A

 (
%

)

|x|

Ideal
Unlocked: Separation = 1000

Unlocked: Separation = 10000
Locked: Separation = 2
Locked: Separation = 1

Fig. 4. Inter-module Locking – the probabilistic response of the locked and
unlocked versions of the modules in Example 5. The first is for the unlocked
version with the rates “slow,” “fast,” and “fastest,” each separated by a factor
of 1000; the next with these rates separated by a factor of 10,000; the next
for the locked version with rates “slow” and “fast” separated by a factor of
2; and the last with these rates identical.

the strength of this scheme, the exponentiation example shows

how even with no rate separation, a better approximation to

the true value is reached than with a rate separation of 1000

in the unlocked case.

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40

P
ro

b
ab

il
it

y
 o

f
O

u
tc

o
m

e
A

 (
%

)

|x|

Ideal
Unlocked: Separation = 1000

Unlocked: Separation = 10
Locked: Separation = 1

Fig. 5. Inter-module Locking (Logarithm) – an example with a logarithm
module feeding a stochastic module; the correct value of the probability is
the ceiling of the base two logarithm in percent (shown as ideal).

C. Locking the Stochastic module

The stochastic module described in Section II-C is at the

core of our synthesis methodology [6]. In order to produce

different combinations of molecular types according to a

specified probability distribution, layers of amplification and

inhibition are needed. The method necessitates reactions with

widely separated rates to accomplish this. Here we propose

an alternative approach, based on locking. All initialization

reactions share one key; as such, the choice between the

reactions is made independently of the types and quantities

of keys present. Thus, the probability distribution is still a

function of the input types.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

P
ro

b
ab

il
it

y
 o

f
O

u
tc

o
m

e
A

 (
%

)

|x|

Ideal
Locked: Separation = 1

Locked: Separation = 10
Unlocked: Separation = 1000000

Unlocked: Separation = 1000

Fig. 6. Inter-module Locking (Exponentiation) – an example with an
exponentiation module feeding a stochastic module; the correct value of the
probability is proportional to the exponential (base 2) of the quantity of the
input, hitting 100% at an input of 10.

Our stochastic module becomes:

∅
slow
−→ keysmith

keysmith
slow
−→ key

∀i : key + ei
slow
−→ di

∀i : di + ei
fast
−→ 2di

∀i 6= j : di + ej
fast
−→ di

∀i : di + keysmith
fast
−→ di

∀i : di
slow
−→ di + Oi.

(8)

The lock on each initiating reaction ensures that only a

single random choice can be made. Once made, this choice

inhibits all other choices both by consuming competing

molecules and by destroying subsequent keysmiths. It is

interesting to note that this version actually requires fewer

reactions than our previous version for cases with five or more

outcomes.

Figure 7 shows that the error at any given rate separation

is more than an order of magnitude lower with locking than

without; this is before taking into account that the unlocked

version actually requires three levels, thus needing two such

separations, while the locked version needs only one. Both the

locked and unlocked versions were of a stochastic module with

three outcomes; 100,000 random trajectories were run for each

data point. With fewer requirements on reaction rates, much

less error for a given separation in the rates and fewer required

reactions in cases with large numbers of outcomes, the locked

version is clearly superior.

IV. DISCUSSION

We have implemented the modular designs described here in

a tool called BAMBI (Brian’s Automated Modular Biochemi-

cal Instantiator). Given:

• designated input and output types,

• specific quantities (or ranges of values) for the input

types,

• target functional dependencies, and

• target probability distribution,

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000

P
er

ce
n
t

o
f

T
ra

je
ct

o
ri

es
 i

n
 E

rr
o
r

Reaction Rate Separation

unlocked
locked

Fig. 7. Accuracy of the Locked vs. Unlocked Stochastic Modules – The
percent of trajectories whose initial choice is not reflected in the final state is
shown as a function of the separation between “fast” and “slow” rates.

the tool synthesizes a set of biochemical reactions. The targets

can be nearly any analytic function or data set. The tool

provides detailed measures of accuracy and robustness.

Our work, thus far, has focused on “technology-

independent” methods of synthesizing biochemistry: synthe-

sizing a design for a precise, robust, programmable probability

distribution on outcomes, for arbitrary types and reactions. In

future work, we will extend this methodology to the “technol-

ogy mapping” phase by implementing designs with specific

libraries and toolkits such as with MIT’s BioBricks [3].

REFERENCES

[1] A. Arkin, J. Ross, and H. McAdams, “Stochastic Kinetic Analysis of
Developmental Pathway Bifurcation in Phage λ-Infected E. Coli Cells,”
Genetics, Vol. 149, No. 1633, 1998.

[2] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro, “An Au-
tonomous Molecular Computer for Logical Control of Gene Expression,”
Nature, Vol. 429, pp. 423–429, 2004.

[3] BioBricks Parts List, MIT Registry of Standard Biological Parts,
http://parts.mit.edu.

[4] D. Endy and R. Brent, “Modelling Cellular Behaviour,” Nature, Vol. 409,
pp. 391–395, 2001.

[5] D. Endy, “Foundations for Engineering Biology,” Nature, Vol. 438, pp.
449–453, 2005.

[6] B. Fett, J. Bruck, and M. Riedel, “Synthesizing Stochasticity in Biochem-
ical Systems,” Design Automation Conference, pp. 640–645, 2007.

[7] M. Gibson and J. Bruck, “Efficient Exact Stochastic Simulation of
Chemical Systems with Many Species and Many Channels,” Journal of

Physical Chemistry A, No. 104, pp. 1876–1889, 2000.

[8] D. Gillespie, “Exact Stochastic Simulation of Coupled Chemical Reac-
tions,” Journal of Physical Chemistry, Vol. 81, No. 25, pp. 2340–2361,
1977.

[9] C. Goble, S. Pettifer, R. Stevens, and C. Greenhalgh, “Knowledge Inte-
gration: in silico Experiments in Bioinformatics,” in The Grid: Blueprint

for a New Computing Infrastructure, 2nd Edition, eds. Ian Foster and
Carl Kesselman, Morgan Kaufman, 2003.

[10] R. Heinrich and S. Shuster, “The Regulation of Cellular Systems,”
Chapman and Hall, 1996.

[11] A. Hernday, B. Braaten, and D. Low,“The Intricate Workings of a
Bacterial Epigenetic Switch,” Advances in Experimental Medicine &

Biology, Vol. 547, No. 83-9, 2004.

[12] I. Herskowitz, “Life Cycle of the Budding Yeast Saccharomyces cere-

visiae,” Microbiological Reviews, Vol. 52, No. 4, pp. 536–553, 1988.

[13] E. Libby, T. Perkins, and P. Swain, “Noisy information processing
through transcriptional regulation,” Proceedings of the National Academy

of Sciences, Vol. 104, No. 17, pp. 7151–7156, 2007.

[14] L. Lok and R. Brent, “Automatic Generation of Cellular Reaction
Networks with Moleculizer 1.0,” Nature Biotechnology, Vol. 23, No. 1,
pp. 131–136, 2005.

[15] C. Myers, “Asynchronous Circuit Design,” John Wiley and Sons, 2001.
[16] L. Nagel and D. Pederson, “Simulation Program with Integrated Circuit

Emphasis,” Midwest Symposium on Circuit Theory, 1973.
[17] S. Paliwal, P. Iglesias, K. Hilioti, A. Groisman, and A. Levchenko,

“MAPK-mediated bimodal Gene Expression and Adaptive Gradient Sens-
ing in Yeast,” Nature, Vol. 446, Issue 7131, pp. 46–51, 2007.

[18] W. Qian and M. Riedel, “Robust Polynomial Arithmetic with Stochastic
Logic,” Design Automation Conference, 2008.

[19] J. Rabaey, “Design without Borders – A Tribute to the Legacy of A.
Richard Newton,” Design Automation Conference, 2007.

[20] M. Riedel, “The Computer-Aided Synthesis of Stochasticity in Biochem-
ical Systems,” Advances in Synthetic Biology, 2008.

[21] D. Ro, E. Paradise, M. Ouellet, K. Fisher, K. Newman, J. Ndungu, K.
Ho, R. Eachus, T. Ham, M. Chang, S. Withers, Y. Shiba, R. Sarpong, and
J. Keasling, “Production of the Antimalarial Drug Precursor Artemisinic
Acid in Engineered Yeast,” Nature, Vol. 440, pp. 940–943, 2006.

[22] M. Sedlak and N. Ho, “Production of Ethanol from Cellulosic Biomass
Hydrolysate Using Genetically Engineered Yeast,” Applied Biochemistry

& Biotechnology, Vol. 114, No. 1–3, pp. 403–416, 2004.
[23] H. Smith, C. Hutchinson III, C. Pfannkoch, and J. Venter, “Generating a

Synthetic Genome by Whole Genome Assembly: φX174 Bacteriophage
from Synthetic Oligonucleotides,” Proceedings of the National Academy

of Sciences, Vol. 100, pp. 15440–15445, 2003.
[24] J. Glass, et al., “Essential Genes of a Minimal Bacterium,” Proceedings

of the National Academy of Sciences, Vol. 103, pp. 425–430. 2006.
[25] L. Weinberger, J. Burnett, J. Toettcher, A. Arkin, and D. Schaffer,

“Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop:
HIV-1 Tat Fluctuations Drive Phenotypic Diversity,” Cell, Vol. 122, pp.
169–182, 2005.

[26] E. Zielinska, “Chris Voigt: Biology’s Toy Maker,” The Scientist, Vol.
21, No. 9, 2007.

