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Abstract— We consider the design of IIR filters operating on 

oversampled sigma-delta modulated bit streams using stochastic 

arithmetic. Conventional digital filters process multi-bit data at 

the Nyquist rate using multi-bit multipliers and adders. High 

resolution ADCs based on the sigma-delta modulation generate 

random bits at an oversampled rate as intermediate data. We 

propose to filter the sigma-delta modulated bit streams directly 

and present first and second order low pass IIR filters based on 

the stochastic integrator. Experimental results show a significant 

reduction in hardware area by using stochastic filters.  

Keywords—Stochastic computing; Oversampling; Sigma-delta 

modulation; Stochastic integrator; IIR filters 

I. INTRODUCTION 

Filtering is a fundamental operation in signal processing to 

modify the spectral characteristics of signals, with numerous 

applications in image and speech processing. Due to the proli-

feration of VLSI technology, bulk of the filtering today is 

performed in the digital domain. Digital filtering outperforms 

analog signal processing by offering better noise immunity, 

repeatability and a superior tolerance to process variations. 

Conventional digital filtering is based on Nyquist-rate data 
convertors and multi-bit digital filters as depicted in Fig.1. The 
analog input is converted to a multi-bit digital representation 
by a Nyquist rate analog-to-digital convertor (ADC), and 
processed by a multi-bit digital filter. The filtered digital signal 
is then converted back to the analog domain by a digital-to-
analog convertor (DAC). The key attributes of a digital filte-
ring architecture are the data processing rate and the resolution. 
Conventional digital filtering processes data at the Nyquist rate 
   , which is equal to twice the maximum frequency in the 
analog input signal (sampling theorem) [1] while the resolution 
is determined by the ADC resolution.  

Despite the pervasiveness of conventional digital filtering, 
the architecture suffers from a number of limitations. The 
modest resolution of modern Nyquist rate ADCs limits the 
resolution of the architecture to  -   bits [2], [3]. In addition, 
the multi-bit digital filters require multi-bit multipliers and 
adders, leading to a large area and power dissipation. 

A significant improvement over the conventional Nyquist-

rate digital filtering is possible by using oversampled sigma-

delta modulator (SDM) based data convertors [4]. An SDM 

operates at a processing rate much higher than the Nyquist rate 

while converting the analog input to a much lower resolution 

one bit representation. The SDM therefore trades amplitude 

resolution in favor of resolution in time.  
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Fig.2 Conventional digital filtering based on SDM ADCs/DACs 
 

SDM based ADCs offer a high resolution (upto  4 bits) at 

a fraction of the power dissipated by Nyquist rate ADCs [3]. 

Moreover, SDM based ADCs are built using fewer analog 

components leading to a lower implementation cost [3] and 

better integration with the standard CMOS technology. 

The SDM bit stream at the oversampled rate 𝑅   (𝑅 ≫  ) 

is processed by a decimation filter to obtain a multi-bit digital 

representation of the analog input at the Nyquist rate. There-

fore, Nyquist-rate data convertors in the conventional digital 

filtering architecture may be replaced by SDM based data 

convertors to improve the resolution. However, the resulting 

architecture (Fig.2) still requires multi-bit digital filters, and 

more importantly additional decimation and interpolation 

filters to interface the SDM at the oversampled rate.  

We propose to filter the oversampled SDM bit streams 

directly to avoid the interface filters and simplify the digital 

filters to process bit stream data. The proposition of filtering 

analog signals encoded as SDM bit streams by digital filters 

constructed using one bit adders and multipliers promises 

major savings in area. 

The idea of filtering oversampled SDM bit streams directly 

has been explored in literature. Numerous filter designs have 

demonstrated the feasibility of the architecture in Fig.3 such as 

the SDM based bit stream FIR filters [5-7], IIR filters [8-10] 

and LMS adaptive filters [11], [12]. Tutorial papers explaining 

the approach with potential applications have also appeared 

[13], [14]. 
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Fig.3 SDM based oversampled bit stream filtering 
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Fig.4 The conventional IIR filter structure. Existing SDM based bit stream IIR 

filters encode either the input signal  𝑥(𝑛) or the coefficients  𝑎𝑖  in the bit 
stream format to simplify the multipliers. 

 
Digital filters are classified into FIR or IIR filters based on 

the filter transfer function. IIR filters meet a given set of filter 
specifications using fewer memory and logic resources than 
FIR filters and are the focus of the current work. Existing SDM 
based bit stream IIR filters [8-10] make limited use of the over-
sampled bit streams, encoding either the input signal or the 
filter coefficients in the bit stream format, while representing 
the other in a conventional multi-bit format leading to simpler 
multipliers. Moreover, the number of SDMs required in the 
filters increases linearly with the filter order. 

We propose an IIR filter structure based on the stochastic 
integrator [15] to process analog inputs encoded as over-
sampled SDM bit streams. Our approach differs from the 
conventional IIR filter structure (Fig.4) by avoiding explicit 
multipliers and adders. We develop an original  -transform 
analysis of the stochastic integrator and present a modified 
stochastic integrator with a gain parameter    We discuss the 
design of first and second order low pass IIR filters based on 
the modified stochastic integrator and present frequency 
domain simulation results. We compare the hardware costs of 
our proposed filters to the conventional IIR filters and conclude 
with a discussion on the advantages and trade-offs of SDM 
based bit stream filtering. In the following sections, we assume 
that the oversampled SDM bit streams are available for proces-
sing and do not discuss the design of SDMs.  

II. STOCHASTIC INTEGRATOR 

Consider an  -bit binary up/down counter    with   states 
labelled as           . Let    𝑛 (𝑛)  denote the  -bit 
binary number stored in the counter at time  𝑛  The counter 
inputs    and    𝑛 update the counter state every clock cycle 
according to the rule in Table I. Let the counter inputs be 
driven by independent Bernoulli random bit streams such that, 

    (    )    (𝑛)     (   𝑛   )    (𝑛)    ( ) 

TABLE I. Counter state update rule 

             (   ) 

1 0      ( )    

0 1      ( )    

0 0      ( ) 

1 1      ( ) 

The next counter state    𝑛 (𝑛   ) is a random variable with 
a probability distribution function shown in Table II. 

TABLE II. Probability distribution function of the counter state  

     (   )             

     ( )      ( )(    ( )) 

     ( )      ( )(    ( )) 

     ( )     ( )    ( )     ( )  ( ) 

 

The expected value of the next counter state is computed as, 

 [   𝑛 (𝑛   )]  (   𝑛 (𝑛)   )(  (𝑛)    (𝑛)  (𝑛)) 

  (   𝑛 (𝑛)   )(  (𝑛)    (𝑛)  (𝑛))                 

     𝑛 (𝑛)(     (𝑛)  (𝑛)    (𝑛)    (𝑛)) ( ) 

which simplifies to, 

 [   𝑛 (𝑛   )]     𝑛 (𝑛)    (𝑛)    (𝑛) ( ) 

In addition, the counter state is compared with an  -bit 
uniformly distributed random integer using a comparator. The 
comparator output is logic 1 if the counter state exceeds the 
random integer, else logic 0. Let  (𝑛) denote the probability of 
the comparator output to be logic 1 when the counter state 
is    𝑛 (𝑛). Then,  

    (    𝑎 𝑎             𝑎       𝑛)   (𝑛)  

  (𝑛)  
   𝑛 (𝑛)

 
 (4) 

The probability of the comparator output to be logic 1 in the 
next clock cycle,   (𝑛   )  is computed from  (𝑛)  and the 
input probability values   (𝑛) and   (𝑛) using the law of total 
probability as, 

 (𝑛   )  ( (𝑛)  
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 ( ) 

We notice that ( ) and ( ) differ only by a factor of   ⁄ . 

In fact, a simpler method to arrive at ( ) is to compute the 

expected value of the next counter state as a function of the 

present state and the input probability values, and dividing the 

expression by the number of states  . Intuitively, the output of 

the system is logic 1 with a probability that is equal to the 

expected value of the counter state scaled by   ⁄ . We will 

use the observation later to derive equivalent expressions for 

the modified stochastic integrator. 

We interpret the probability variables in ( ) as real values in 
the interval [    ] by applying the bipolar transformation, 

                   (𝑛)    (𝑛)      

𝑥𝑖(𝑛)    𝑖(𝑛)            ( ) 

Equation ( ) is now expressed as, 

 (   )   ( )  
  ( )    ( )

 
 ( ) 
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Fig.5 Stochastic integrator 

We have thus constructed a dynamical system described by the 
recurrence relation in ( ) with real valued inputs and outputs in 
the interval [    ]. We refer to the system as the stochastic 
integrator depicted in Fig.5.  

To verify the analogy with a discrete-time integrator, we 
consider the frequency domain representation of ( ) using the 
z-transform. Let the  -transform pairs of the variables be,   

 (𝑛)   ( ) 𝑥 (𝑛)    ( ) 𝑥 (𝑛)    ( ) ( ) 

   ( )   ( )  
  ( )    ( )

 
 ( ) 

Therefore, the transfer functions of the system become, 

 ( )

  ( )
|
    

 
 

 (   )
 

 ( )

  ( )
|
    

 
  

 (   )
  (  ) 

The transfer function of a discrete-time integrator is given by, 

 ( )   
 

   
 (  ) 

The system therefore performs discrete time integration of 

the input random bit streams 𝑥 (𝑛) and 𝑥 (𝑛) with a gain of 

  ⁄  to produce the output random bit stream  (𝑛)  The input 

𝑥 (𝑛) is connected to the non-inverting input of the stochastic 

integrator while 𝑥 (𝑛) is connected to the inverting input. 

A stochastic integrator is characterized by the number of 
states    and the state update rule. Equation  ( ) describes a 
stochastic integrator where the state is updated every clock 
cycle and the next state takes on one of three possible values 
shown in Table I. Let us now consider an integrator with 
  states where the state is updated every   clock cycles. The 
integrator observes   (   ) random bits at each of the two 
inputs before transitioning to the next state. We assume that the 
input probability values do not vary significantly over the   
clock cycles and remain equal to   (𝑛) and   (𝑛). 

Let the   random bits at the two inputs be denoted by, 

  
𝑖                          (  ) 

with expected values   , 

 [  
𝑖]    (𝑛)    (    (𝑛))      (𝑛)  

 [  
𝑖]    (𝑛)    (    (𝑛))      (𝑛) (  ) 

The integrator state is now updated according to the rule, 

   𝑛 (𝑛   )     𝑛 (𝑛)  ∑  
𝑖

 

𝑖  

 ∑  
𝑖

 

𝑖  

 ( 4) 

The expected value of the next state is therefore given by, 
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                             𝑛 (𝑛)  ∑ [  
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Applying the bipolar transformation yields, 

 (   )   ( )  
 (  ( )    ( ))

 
 (  ) 

Equation (  ) describes a stochastic integrator with a gain 
of    ⁄  that operates at a rate   times lower than the clock 
rate with transfer functions given by, 

 ( )

  ( )
|
    

 
 

 (   )
 

 ( )

  ( )
|
    

 
  

 (   )
   (  ) 

A hardware realization of the parameterized stochastic inte-
grator is shown in Fig.6. An up/down counter    with      
states            , computes the difference in the number 
of logic 1 bits observed at the two integrator inputs over the   
clock cycles. The signed binary count in    is added to the 

integrator state stored in    at the end of the     clock and the 
counter    is reset. Note that a stochastic integrator with     
is identical to the structure in Fig.5. In the following sections, 
we will represent a stochastic integrator by the symbol shown 
in Fig.7 with the inverting input labeled as “ ”. 
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Fig.6 Modified stochastic integrator with parameter   
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Fig.7 Stochastic integrator symbol with parameter   



III. STOCHASTIC IIR FILTERS 

We now discuss bit stream IIR filters based on the stoch-

astic integrator. A general     order IIR filter is described by 

the difference equation, 

 (𝑛)  ∑𝑎𝑖 (𝑛   )  

 

𝑖  

∑  𝑥(𝑛   )

 

   

 (  ) 

with a frequency domain representation, 

 ( )  
 ( )

 ( )
 

∑    
   

   

  ∑ 𝑎𝑖
 
𝑖    𝑖

 (  ) 

where 𝑥(𝑛) and  (𝑛)are the filter input and output values at 
time 𝑛. The constant coefficients 𝑎𝑖 and    determine the zeros 

and poles of the filter. The zeros and poles govern the filter 
frequency response and are obtained from the filter transfer 
function  ( ) as roots of the numerator and the denominator 
polynomial. Poles near     in the complex  -plane realize 
low pass digital filters. Moreover, every pole of a stable filter 
must lie inside the unit circle | |   . 

The input and output values for a conventional digital IIR 

filter are deterministic multi-bit numbers. However, in the 

context of our stochastic integrator based bit stream IIR filters, 

𝑥(𝑛) and  (𝑛) represent the instantaneous probabilities of the 

input and output bit streams. The input bit streams to our stoc-

hastic IIR filters are always generated by SDM based ADCs. 

Autocorrelation studies have revealed that the bit stream gene-

rated by an SDM is a Bernoulli process [13]. Moreover, bit 

streams generated by distinct sources are uncorrelated.     

Consider the stochastic integrator configuration depicted in 

Fig.8 where the input bit stream 𝑥(𝑛) is derived from an SDM 

based ADC. The recurrence relation of the filter is given by, 

 (𝑛   )   (𝑛)  
 (𝑥(𝑛)   (𝑛))

 
  

                  (𝑛) (  
 

 
)  

 

 
𝑥(𝑛) (  ) 

Thus, the transfer function becomes, 

  ( )   ( ) (  
 

 
)  

 

 
 ( )  

  ( )  
 ( )

 ( )
 

 

      
 (  ) 

The only pole    of the filter is located at       ⁄ . Since, 

               ⁄    (  ) 

and the system is a stable first order low pass IIR filter.  

A second order low pass stochastic IIR filter is realized by 
the system in Fig.9 with the recurrence relations, 

  (𝑛   )    (𝑛)  
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Fig.8 First order low pass stochastic IIR filter 
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Fig.9 Second order low pass stochastic IIR filter 

 
The transfer function of the system is obtained by solving the 
following pair of equations, 

   ( )    ( )  
  

  

( ( )   ( ))  

  ( )   ( )  
  

  

(  ( )   ( )) (  ) 

which yields  ( )   
    

     
  (          )  (              )

 

 (  ) 

The poles of the second order stochastic IIR filter are given by, 

        
  

   

 √
  

   
  4        

4  
   

  (  ) 

while the zeros are located at    .  

The second order IIR filter may possess two real valued 
poles or a pair of complex conjugate poles depending on the 
stochastic integrator parameters. Second order systems, thus, 
exhibit a broader range of behavior than first order systems. 
Since      , 

    
  

   

   (  ) 

the system is a stable second order low pass IIR filter. 

IV. EXPERIMENTAL RESULTS 

In this section we present experimental results on stochastic 
filters based on the first and second order IIR filter structures 
described in the previous section. Table III lists the stochastic 
integrator parameters for the filters used in our experiments. 
The parameter values were selected to demonstrate a diverse 
set of filter responses. The sampling frequency    and the over-
sampling ratio 𝑅  were set at      and 𝑅     . Therefore, 
the highest input frequency  𝑖  processed by the stochastic IIR 
filters is given by,    

 𝑖  
  
 𝑅

 
 

   
      𝑖  

 

   
 (  ) 



TABLE III. Stochastic integrator parameters used in the experiments 

Filter Order             

LPF_1A 1 1 64 - - 

LPF_1B 1 1 256 - - 

LPF_2A 2 1 64 1 256 

LPF_2B 2 1 256 1 64 

We measure the magnitude responses of the stochastic filters 
in Table III by applying a sinusoidal test input of frequency   
to an SDM based ADC and filtering the resulting bit stream. 
The multi-bit stochastic integrator state corresponding to the 
output bit stream is the filter output. The filter response at 
frequency   is determined from the FFT of the filter output. 
The test input frequency is swept from DC to    to generate 
the curves shown in Fig.10 and Fig.11. Each plot shows the 
simulated magnitude response of the stochastic IIR filter with 
the expected response of a conventional IIR filter.  

Fig.10 depicts the magnitude responses of the first order 
stochastic IIR filters. Recall that the pole of a first order IIR 
filter is located at        . The pole of LPF_1B is much 
closer to     than the pole of LPF_1A, leading to a sharper 
roll-off and lower bandwidth. The magnitude responses of the 
second order stochastic IIR filters are shown in Fig.11. Filter 
LPF_2B has two simple real poles while LPF_2A has a pair of 
complex conjugate poles, which is evident from the overshoot 
in the magnitude response. 

 The output resolution of a stochastic filter is determined by 
the number of integrator states   . A conventional IIR filter 
with an  -bit resolution is equivalent to a stochastic IIR filter 
having an integrator with       states. However, the pole 
location of a stochastic filter is strongly affected by the value 
of   , unlike conventional filters where the resolution has no 
impact on the pole location. This requires a careful selection of 
values for   and   while designing stochastic IIR filters to 
simultaneously meet the requirements on the output resolution 
and the pole locations. 

 
Fig.10a Magnitude response of LPF_1A 

 
Fig.10b Magnitude response of LPF_1B 

 
Fig.11a Magnitude response of LPF_2A 

 
Fig.11b Magnitude response of LPF_2B 

 

We compare the hardware costs of the stochastic IIR filters 
with the conventional IIR filters having an equivalent output 
resolution for a 45nm CMOS technology. The results in Table 
IV clearly indicate that stochastic filters occupy a smaller area 
than the conventional filters. The random number generator in 
the stochastic integrators was constructed using an LFSR. 

TABLE IV. Comparison of the hardware area (library units) 

Filter Conventional IIR Filter Stochastic IIR Filter 

LPF_1A 554 118.4 

LPF_1B 897.2 156.1 

LPF_2A 1067.4 *** 270.0 

LPF_2B 1248.3 *** 270.0 

*** considering different resolution in the two stages to make a comparison 

V. A DESIGN EXAMPLE 

First order IIR filters are of considerable interest in audio 
signal processing due to their low implementation cost. We 
consider the design of first order low pass IIR filters for audio 
signals known as treble-cut filters. The specifications for an 
example treble-cut audio filter are summarized in Table V.  

TABLE V. Specifications for a treble-cut audio filter   

Nyquist frequency    (Hz) 44100 

Oversampling ratio   64 

Sampling frequency        (Hz) 2822400 

Computation resolution (bits) 9 

Analog cut-off frequency    (Hz) 800 

The design of a digital first order low pass IIR filter begins 
with an analog first order low pass transfer function given by, 

 ( )  
  

    

 (  ) 

where         is the analog cut-off frequency in rad/s. 

BW1A 

BW1B 



The analog transfer function pole at       is mapped to 
a  -plane pole using the impulse invariance method [16] as, 

                                 (  ) 

Based on the location of the  -plane pole in (  ) and the 
filter specifications, we select     and         as the 
parameters for a first order stochastic treble-cut audio filter. 
We test the stochastic filter by applying a mixture of sinusoidal 
signals at frequencies           ,            and 
  𝑖         . The input and output signal spectrums in 

Fig.12 and Fig.13 verify the operation of the stochastic treble-
cut audio filter. The signal at frequency      is at the filter cut-
off frequency and is attenuated by 3dB. The signal at   𝑖   is 

removed from the output while the signal at      is unaffected. 
Table VI compares the area of the first order stochastic treble-
cut audio filter with a conventional implementation. We obse-
rve that the stochastic implementation requires a much smaller 
area than the conventional IIR filter. 

lowf medf highf
 

Fig.12 Input signal spectrum 

lowf medf highf
 

Fig.13 Filtered output signal spectrum 

TABLE VI. Comparison of the hardware area for the audio filter (library units) 

Filter Conventional IIR Filter Stochastic IIR Filter 

Treble-cut filter 918.2 175.2 

VI.  CONCLUSIONS AND FUTURE WORK 

We have presented an approach to filter analog signals 
encoded as SDM bit streams by IIR filters constructed using 
the stochastic integrator. The proposed architecture simplifies 
the arithmetic operations in the conventional IIR filters and 
offers significant savings in area. However, unlike convention-
nal digital filters, stochastic filters operate on probabilistic data 
and are susceptible to random noise.     

Future work on stochastic IIR filters involves extending the 
low pass structures to design band pass and high pass filters 
based on the stochastic integrator and deriving additional 
performance metrics such as the power dissipation. Developing 
an accurate noise model to predict the SNR at the output of the 
stochastic filters is a challenging task. The final validation of 

the approach would require designing stochastic filters to solve 
complex filtering problems with an acceptable performance.  
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