
RESEARCH ARTICLE

Computing mathematical functions with

chemical reactions via stochastic logic

Arnav SolankiID, Tonglin Chen, Marc Riedel*

Department of Electrical and Computer Engineering, University of Minnesota Twin-Cities, Minneapolis, MN,

United States of America

* mriedel@umn.edu

Abstract

This paper presents a novel strategy for computing mathematical functions with molecular

reactions, based on theory from the realm of digital design. It demonstrates how to design

chemical reaction networks based on truth tables that specify analog functions, computed

by stochastic logic. The theory of stochastic logic entails the use of random streams of zeros

and ones to represent probabilistic values. A link is made between the representation of ran-

dom variables with stochastic logic on the one hand, and the representation of variables in

molecular systems as the concentration of molecular species, on the other. Research in sto-

chastic logic has demonstrated that many mathematical functions of interest can be com-

puted with simple circuits built with logic gates. This paper presents a general and efficient

methodology for translating mathematical functions computed by stochastic logic circuits

into chemical reaction networks. Simulations show that the computation performed by the

reaction networks is accurate and robust to variations in the reaction rates, within a log-

order constraint. Reaction networks are given that compute functions for applications such

as image and signal processing, as well as machine learning: arctan, exponential, Bessel,

and sinc. An implementation is proposed with a specific experimental chassis: DNA strand

displacement with units called DNA “concatemers”.

1 Introduction

In recent years, the topic of stochastic logic has been advertised as a possible design paradigm

for emerging technologies that promise scaling beyond complementary metal–oxide–semi-

conductor (CMOS), as well as the basis of non-von Neumann architectures [1, 2]. While the

term can mean many things, ranging from randomized algorithms to probabilistic analysis, in

our context “stochastic computing” or “stochastic logic” has a specific meaning: it refers to

logic-level computation on randomized bitstreams. Instead of the traditional values of 1 and 0

that form the basis of binary computing systems, in stochastic computing a real value x is rep-

resented as a stream of random bits. In this stream, the probability of a randomly chosen bit

being 1 is x, and the probability of it being 0 is 1 − x.

The original ideas for this form of stochastic computation are generally attributed to

research by Gaines and Poppelbaum in the late 1960s [3, 4], as well as to work by Brown and

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Solanki A, Chen T, Riedel M (2023)

Computing mathematical functions with chemical

reactions via stochastic logic. PLoS ONE 18(5):

e0281574. https://doi.org/10.1371/journal.

pone.0281574

Editor: Ivan Kryven, Utrecht University,

NETHERLANDS

Received: September 2, 2022

Accepted: January 26, 2023

Published: May 8, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0281574

Copyright: © 2023 Solanki et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: MR DARPA Grant W911NF-18-2-0032

https://www.darpa.mil The funders had no role in

https://orcid.org/0000-0003-4039-2814
https://doi.org/10.1371/journal.pone.0281574
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281574&domain=pdf&date_stamp=2023-05-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281574&domain=pdf&date_stamp=2023-05-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281574&domain=pdf&date_stamp=2023-05-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281574&domain=pdf&date_stamp=2023-05-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281574&domain=pdf&date_stamp=2023-05-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281574&domain=pdf&date_stamp=2023-05-08
https://doi.org/10.1371/journal.pone.0281574
https://doi.org/10.1371/journal.pone.0281574
https://doi.org/10.1371/journal.pone.0281574
http://creativecommons.org/licenses/by/4.0/
https://www.darpa.mil


Card in the 1990s [5]. Beginning in the late 2000s, there has been a renewed interest, with too

many publications to enumerate. We point to some influential papers as well as surveys: [6–

11]. In [12, 13], Qian et al. presented a general synthesis methodology for stochastic logic. Our

exposition is based on that framework.

The main appeal of stochastic logic is that a wide variety of functions can be computed with

simple structures. For instance, multiplication can be implemented with a single AND gate.

More complicated functions such as the exponential, absolute value, square roots, and hyper-

bolic tangent can each be computed with a very small number of gates [14]. Simplicity is a

compelling advantage for the task that we confront in this paper: computing with molecular

reactions.

The idea of molecular computing dates back to seminal work by Len Adleman, who dis-

cussed solutions to combinatorial problems such as Boolean satisfiability and Hamiltonian

paths with DNA [15]. There has been a broad range of research since. We point to a small sub-

set: [16–22].

This paper explores a link between the two fields. Specifically, it presents a strategy for com-

puting mathematical functions with molecular reactions by applying concepts from stochastic

logic. We preview with an example. Suppose we want a chemical reaction network that com-

putes the function

f ða; bÞ ¼ 1 � a � bþ ab;

where a and b are real-valued variables. The corresponding digital function for stochastic logic

can be obtained using the methods discussed in Section 1. In this case, it is f(a, b) = NOR(a, b),

expressed in the following truth table:

To represent a stochastic variable x that ranges from [0, 1] in a molecular format, we use a

pair of chemical species X0 and X1. As will be discussed in Section 2, we use a fractional repre-

sentation:

x ¼
½X1�

½X0� þ ½X1�
: ð1Þ

Here [X1] denotes the concentration of the molecular species X1. Using this representation,

we obtain a chemical reaction network (CRN) from the truth table above:

A0 þ B0 ! C1

A0 þ B1 ! C0

A1 þ B0 ! C0

A1 þ B1 ! C0

ð2Þ

a b NORða; bÞ
0 0 1

0 1 0

1 0 0

1 1 0

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 2 / 26

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0281574


Note that the subscripts of the species match the entries of the truth table above. This CRN

computes the target function, c = 1 − a − b + ab, in terms of the fractional variables a, b and c.
Each of these corresponds to a pair of chemical species, {A0, A1}, {B0, B1} and {C0, C1}, respec-

tively. The central result of this paper, presented in Section 4, is a proof that we can implement

any polynomial function, specified by a truth table, with a CRN matching its truth table

template.

This paper builds upon our prior work, both generalizing and simplifying it. We use

the same formalism, namely a fractional representation of values, in this paper as in [23]

and [24].

• In [23], we proposed a technique for computing functions based on a decomposition with

Bernstein polynomials [25]. The technique can implement a broad class of functions, namely

all univariate polynomials, but is quite abstruse. A target polynomial is first repackaged in

Bernstein form [26]. This form is implemented in a logic circuit using a form of generalized

multiplexing [13]. Finally, the logic circuit is translated into a CRN.

• In [24], we proposed an alternative technique based on factoring of polynomials with Hor-
ner’s rule. The factored form is implemented with a cascade of 2-input logic gates. Finally,

the logic gate circuit is translated into a CRN. Although conceptually simpler than working

with Bernstein polynomials, this approach is not quite so general: only a small subset of poly-

nomials can be decomposed in the requisite way with Horner’s rule.

A significant limitation of both prior approaches is the complexity of the mathematical

formulation.

The approach in this paper is conceptually much simpler and cleaner. As with the NOR

function example above, a target polynomial function is first mapped to a truth table. This can

be done using fairly standard techniques—at least for people familiar with the theory of sto-

chastic logic—and the results are intuitive. Then a CRN is constructed that matches the tem-

plate of the truth table.

This approach is also more general. Whereas the method in [23] is limited to univariate

polynomials, the method in this paper can implement any multivariate polynomial. Stochastic

logic operates on functions where the domain and codomain are in the interval [0, 1], i.e., the

inputs and the output are probabilities. Common transcendental functions can be computed

via polynomial approximations. In S1 File, we provide CRNs for stochastic functions such as

arctan, exponential, Bessel, and sinc to demonstrate our approach in detail. These functions

have practical applications in fields such as machine learning, signal processing, and image

processing. We discuss the implementation of these abstract chemical reaction networks with

DNA strand displacement, with units called DNA concatemers.

This paper is organized as follows. Section 2 presents background information on chemical

reaction networks and stochastic logic. Section 3 describes our methodology for translating

any function computed by a stochastic logic circuit into a set of chemical reactions. Section 4

provides a proof that the proposed methodology is mathematically sound, based on an analysis

of the chemical kinetics. Section 5 analyzes sources of error stemming from differences in reac-

tion rates in one particular case. Section 6 discusses the implementation with DNA strand dis-

placement. It explains how stochastic values can be mapped to DNA molecules that are

capable of self-polymerizing—what we call DNA “concatemers”. These concatemers imple-

ment the generic chemical reaction networks presented in the early sections. Finally, Section 7

provides concluding remarks and discusses future research directions.

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 3 / 26

https://doi.org/10.1371/journal.pone.0281574


2 Background

2.1 Chemical reaction networks

A chemical reaction network (CRN) consists of a set of reactions operating on a set of molecu-
lar species. When a reaction fires, reactant molecules are transformed into product molecules.

For instance, consider the reaction:

X1 þ X2� !
k X3:

Here one molecule of reactant X1 combines with one molecule of reactant X2, resulting in

one molecule of the product X3. The parameter k is called the rate constant. A CRN consists of

multiple reactions occurring simultaneously. Consider a toy example of a CRN with three

reactions operating on the molecule species set {X1, X2, X3, X4}:

X1 þ X2 ! X3;

X2 þ X3 ! 2X4;

3X3 þ X4 ! X1:

Here we assume that all three reactions have the same rate constant, k, an arbitrary value.

To quantify the changes in concentration of all the molecular species involved in a CRN over

time we can apply the theory of mass-action kinetics [27]: reaction rates are proportional to

both the concentrations of the reactants and their rate constants. Given a CRN, one can derive

a set of nonlinear differential equations for the concentrations of all molecular species. For

instance, for the first reaction above, the rate of change of the concentrations of X1, X2 and X3

is

�
d½X1�

dt
¼ �

d½X2�

dt
¼

d½X3�

dt
¼ k½X1�½X2�; ð3Þ

where [X] denotes the concentration of the chemical species X. (We omit the equations for the

second and third reactions for brevity.) Given the initial concentration of the different molecu-

lar species, one can predict the behavior of the CRN by simulating the differential equations.

2.3 Digital logic

We give some basic definitions that we will need pertaining to digital logic.

Definition 1 (Combinational Logic Function) An n-input combinational logic function is

a function F(X1, X2, . . ., Xn) = Y, where all inputs and outputs are Boolean values. That is, 81�

i� n, Xi 2 {0, 1}, Y 2 {0, 1}.

Definition 2 (Truth table) The truth table of a combinational logic function lists all the

possible combinations of its inputs and the corresponding outputs. Each combination of

inputs is called a minterm.

Table 1 in the next section gives an example of the truth table of a combinational logic func-

tion. (We also provided the truth table for the NOR function in Section 1.)

2.3 Stochastic logic

Stochastic logic is an active topic of research in digital design, with applications to emerging

technologies [3, 13, 28]. Computation is performed with familiar digital constructs, such as

AND, OR, and NOT gates. However, instead of having specific Boolean values of 0 and 1, the

inputs are random bitstreams. A number x (0� x� 1) corresponds to a sequence of random

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 4 / 26

https://doi.org/10.1371/journal.pone.0281574


bits. Each bit has probability x of being one and probability 1 − x of being zero, as illustrated in

Fig 1. Computation is recast in terms of the probabilities observed in these streams.

Consider basic logic gates. Given a stochastic input x, a NOT gate implements the function

NOTðxÞ ¼ 1 � x: ð4Þ

This means that while an individual input of 1 results in an output of 0 for the NOT gate

(and vice versa), statistically, for a random bitstream that encodes the stochastic value x, the

NOT gate output is a new bitstream that encodes 1 − x.

The output of an AND gate is 1 only if all the inputs are simultaneously 1. The probability

of the output being 1 is thus the probability of all the inputs being 1. Therefore, an AND gate

implements the stochastic function:

ANDðx; yÞ ¼ xy; ð5Þ

that is to say, multiplication. The output of an OR gate is 0 only if all the inputs are 0. There-

fore, an OR gate implements the stochastic function:

ORðx; yÞ ¼ 1 � ð1 � xÞð1 � yÞ ¼ xþ y � xy: ð6Þ

Table 1. Truth table for a combinational circuit, and the corresponding probability of each row.

X1 X2 X3 F(X1, X2, X3) Probability of row

0 0 0 0 (1 − x1)�(1 − x2)�(1 − x3)

0 0 1 1 (1 − x1)�(1 − x2)�x3

0 1 0 0 (1 − x1)�x2�(1 − x3)

0 1 1 1 (1 − x1)�x2�x3

1 0 0 0 x1�(1 − x2)�(1 − x3)

1 0 1 1 x1�(1 − x2)�x3

1 1 0 1 x1�x2�(1 − x3)

1 1 1 1 x1�x2�x3

https://doi.org/10.1371/journal.pone.0281574.t001

Fig 1. Stochastic representation: A random bitstream. A value x 2 [0, 1], in this case 3/8, is represented as a

bitstream. The probability that a randomly sampled bit in the stream is one is x = 3/8; the probability that it is zero is

1 − x = 5/8.

https://doi.org/10.1371/journal.pone.0281574.g001

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 5 / 26

https://doi.org/10.1371/journal.pone.0281574.t002
https://doi.org/10.1371/journal.pone.0281574.g001
https://doi.org/10.1371/journal.pone.0281574


The output of an XOR gate is 1 only if the two inputs x, y are different. Therefore, an XOR

gate implements the stochastic function:

XORðx; yÞ ¼ ð1 � xÞyþ xð1 � yÞ ¼ xþ y � 2xy: ð7Þ

The NAND, NOR, and XNOR gates can be derived by composing the AND, OR, and XOR

gates each with a NOT gate, respectively. Please refer to Table 2 for a full list of the algebraic

expressions of these gates. An important assumption in stochastic computation is that all

inputs are independent of each other, i.e., the random bitstreams are uncorrelated.

We formalize the definition of stochastic logic functions as follows.

Definition 3 (Stochastic Logic Function) An n-input stochastic logic function y = f(x1, x2,

. . ., xn), where 8xi 2 [0, 1] and y 2 [0, 1], is obtained from a combinational logic function Y =

F(X1, X2, . . ., Xn), by setting corresponding inputs to be independent random variables Xi with

Pr(Xi = 1) = xi.
For a given Boolean circuit, its stochastic function can be computed as follows.

Table 2. Chemical reaction networks for basic logic gates. Note that the indices of molecules match the truth table

implementing the logic gate.

gate inputs function CRN

NOT a b = 1 − a A0 ! B1

A1 ! B0

AND a, b c = ab A0 þ B0 ! C0

A0 þ B1 ! C0

A1 þ B0 ! C0

A1 þ B1 ! C1

OR a, b c = a + b − ab A0 þ B0 ! C0

A0 þ B1 ! C1

A1 þ B0 ! C1

A1 þ B1 ! C1

NAND a, b c = 1 − ab A0 þ B0 ! C1

A0 þ B1 ! C1

A1 þ B0 ! C1

A1 þ B1 ! C0

NOR a, b c = 1 − a − b + ab A0 þ B0 ! C1

A0 þ B1 ! C0

A1 þ B0 ! C0

A1 þ B1 ! C0

XOR a, b c = a + b − 2ab A0 þ B0 ! C0

A0 þ B1 ! C1

A1 þ B0 ! C1

A1 þ B1 ! C0

XNOR a, b c = 1 − a − b + 2ab A0 þ B0 ! C1

A0 þ B1 ! C0

A1 þ B0 ! C0

A1 þ B1 ! C1

https://doi.org/10.1371/journal.pone.0281574.t002

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 6 / 26

https://doi.org/10.1371/journal.pone.0281574.t004
https://doi.org/10.1371/journal.pone.0281574


Theorem 1 (Output of a Stochastic Logic Function [6]) Given input sequences generated
by independent Bernoulli random variables, the output of a stochastic logic function will also be
a sequence generated by a Bernoulli random variable. The probability of the output of a stochas-
tic logic function f being 1 is the sum of all the probabilities of the minterms that evaluate to 1 in
the corresponding combination logic function F. That is,

PrðY ¼ 1Þ ¼
X

J2S

Yn

h¼1

½PrðXh ¼ jhÞ�

 !

ð8Þ

where J = (j1, j2, . . ., jn), ji 2 {0, 1} is a minterm, and S = {J|F(J) = 1} is the set of minterms that
evaluate to 1.

To elucidate Theorem 1, we step through the implementation of a stochastic logic function

from a truth table. Consider a combinational circuit computing a function F(X1, X2, X3) with

the truth table shown in Table 1. Let f(x1, x2, x3) be the stochastic function computed by this

circuit, with real-valued inputs x1, x2, x3 2 [0, 1]. Assuming each input is independent of the

others, set

½PrðX1Þ ¼ 1� ¼ x1; ð9Þ

½PrðX2Þ ¼ 1� ¼ x2; ð10Þ

½PrðX3Þ ¼ 1� ¼ x3: ð11Þ

The probability that the function f evaluates to 1 is equal to the sum of the probabilities of

occurrence of each row that evaluates to 1. The probability of occurrence of each row, in turn,

is obtained from the assignments to the variables, as shown in Table 1: xi if the corresponding

variable Xi is 1 and (1 − xi) if it is 0. Thus, we filter the rows in Table 1 where F(X1, X2, X3) = 1

and add their probabilities together to obtain the expression for the stochastic function:

f ðx1; x2; x3Þ ¼ ð1 � x1Þð1 � x2Þx3 þ

ð1 � x1Þx2x3 þ

x1ð1 � x2Þx3 þ

x1x2ð1 � x3Þ þ

x1x2x3

¼ ð1 � x2Þx3 þ x2x3 þ x1x2ð1 � x3Þ:

ð12Þ

The procedure shown for this example can be generalized to any combinational circuit to

evaluate its stochastic function. Such probabilistic analysis of networks of logic gates is not

new. As early as 1975, the circuit testing community had begun analyzing errors in a similar

way [29, 30]. Similar techniques have also been applied to tasks such as timing and power anal-

ysis [31, 32]. However, characterizing the outputs of the computation this way, as probabilistic

functions, is specific to the field of stochastic logic. We point to some of our prior work in this

field. In [26] we proved that any multivariate polynomial function with its domain and codo-

main in the unit interval [0, 1] can be implemented using stochastic logic. In [13], we provide

an efficient and general synthesis procedure for stochastic logic, the first in the field. In [8], we

provided a method for transforming probabilities values with digital logic. Finally, in [11, 33]

we demonstrated how stochastic computation can be performed deterministically.

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 7 / 26

https://doi.org/10.1371/journal.pone.0281574


3 Implementing stochastic logic with chemical reactions

In the introduction, we gave a brief example of translating a simple polynomial function, the

NOR function, into a CRN. In this section, we step through the details of this process.

3.1 Fractional representation in solution

To represent a stochastic value x in a chemical system, we use two distinct molecular species

X0 and X1 such that

x ¼
½X1�

½X0� þ ½X1�
: ð13Þ

Here we use the notation [X] to refer to the concentration of a molecular species X. We

introduced this fractional representation in our prior work [23, 24]: the value x equals the ratio

of the concentration of X1 to the total concentration of X0 and X1. As with probabilities in sto-

chastic logic, such a fractional value can represent any real number in the unit interval [0, 1].

Indeed, we will demonstrate how this fractional encoding can be used to compute stochastic

functions. We present a potential experimental implementation using DNA strand displace-

ment in Section 6.

3.2 Building a chemical reaction network from a truth table

Consider the truth table for the Boolean AND operation:

Given the fractional representation described above, let us design a CRN that performs

multiplication with an AND operation on two stochastic inputs a and b, producing an output

c. The network consists of the following reactions:

A0 þ B0!
k C0;

A0 þ B1!
k C0;

A1 þ B0!
k C0;

A1 þ B1!
k C1:

ð14Þ

Here k is the rate constant, an arbitrary value, equal for all the reactions. Notice that there is

a one-to-one mapping from the Boolean truth table of the AND gate to the indices of the

A B C = AND(A, B)

0 0 0

0 1 0

1 0 0

1 1 1

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 8 / 26

https://doi.org/10.1371/journal.pone.0281574


chemical species. Note that, given the two inputs a and b in the fractional encoding,

a ¼
½A1�

½A0� þ ½A1�
and b ¼

½B1�

½B0� þ ½B1�
: ð15Þ

If we simulate this CRN, we observe that

c ¼
½C1�

½C0� þ ½C1�
¼ a� b: ð16Þ

That is, the output value is the product of the two input values.

This strategy for implementing stochastic functions with CRN works for an arbitrary num-

ber of inputs, provided the reaction rates are the same for all reactions. We will prove this

assertion in Section 4. Table 2 lists CRNs that implement the stochastic functions of all the

basic logic gates. Again, note that the indices that appear in each CRN match the truth table of

the corresponding gate.

The rate constants for all reactions in these CRNs must be equal for the computation to pro-

ceed correctly. Consider a different situation: for the CRN presented in Eq 14, suppose that the

rate constant of the fourth reaction is 2k, while all the other rate constants are k (where k is an

arbitrary value). Given stochastic inputs a = 0.7 and b = 0.6, simulation shows that the output

is c = 0.462 instead of the expected value a×b = 0.42. We analyze the effects of varying rate con-

stants on the accuracy of the computation in Section 5.

We note that the number of reactions in a CRN that we design equals the number of rows

in the truth table of the corresponding function. The number of rows in a truth table is, of

course, exponential in the number of variables: with n variables there are 2n rows. So, in princi-

ple, the approach that we suggest here could lead to CRNs with an unmanageable number of

reactions. However, as was noted in Section 1, stochastic logic permits a wide range of complex

functions to be implemented with very simple logic [13, 14]. In S1 File, we provide CRNs for

computing polynomial approximations for functions such as arctan, exponential, Bessel, and

sinc. All of these are computed by truth tables with 4, 5 or 6 variables. In the field of molecular

computing, there is essentially no precedent for computing functions as complex as these [34–

36]. We also note that the structure of our CRNs is uniform and “feed-forward”: the output

species are computed directly from the input species, with no coupling or complex feedback

dynamics. Accordingly, the computation should be highly accurate and robust.

A significant feature of our design is that the encoding of the outputs is the same as that of

the inputs. The output of each CRN is encoded by a pair of molecular species, say C0 and C1,

whose relative concentration encodes a stochastic value, c = C1/(C0 + C1). This is exactly the

same format as the inputs, say a = A1/(A0 + A1), and b = B1/(B0 + B1). Therefore the output

from a CRN can be used as the input to another CRN.

The volume of all input solutions can be scaled up to allow the production of more output

solution. This allows for “fanout”: dividing the output solution into multiple parts each used as

inputs to other CRNs. For example, if the output of a CRN feeds into four subsequent CRNs,

its inputs must be scaled up by a factor of 4. Its output can then be volumetrically split into

four separate units that can be fed into each of the subsequent CRNs.

4 Proof of the proposed method

Here we prove the correctness of the method of implementing stochastic functions with CRNs

discussed in Section 3. We then elucidate the proof with a simple example in Section 4.1.

(Readers may want to step through this example first and then return to the proof.)

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 9 / 26

https://doi.org/10.1371/journal.pone.0281574


Theorem 2 Assume an n-input stochastic function y = f(x1, x2, . . ., xn) is implemented by a
combinational Boolean function Y = F(X1, X2, . . ., Xn). The stochastic function can then be
implemented with a CRN with 2n + 2 different molecular species, in which pairs of molecular
species store the input values x1, x2, . . ., xn as well as the output value y, according to the frac-
tional representation in Eq 13. The CRN consists of 2n reactions, each of the form,

X1;v1
þ X2;v2

þ . . .þ Xn;vn
!
k YFðVÞ; ð17Þ

where v1, v2, . . ., vn: F(V) is a row of the truth table for the combinational function F, and V =

(v1, v2, . . .vn) denotes a minterm for the function. Note that the rate constants for all reactions
are equal to k, an arbitrary value.

Let S1 be the set of all minterms V such that F(V) = 1, and let S0 be the set of all minterms V
such that F(V) = 0. Also, we denote ci,j as,

ci;j ¼ PrðXi ¼ jÞ ¼
1 � xi if j ¼ 0

xi if j ¼ 1

(

ð18Þ

where xi is a stochastic input, and i is the index of the input xi in function y = f(x1, x2, . . ., xn).

To prove the theorem, we need to show that, for the given initial values of the stochastic

value xi at time t = 0,

xi ¼
½Xi;1�

½Xi;0� þ ½Xi;1�

�
�
�
�
t¼0

; ð19Þ

the output of the CRN should match the output of the stochastic function stated in Theorem 1,

lim
t!1

y ¼ lim
t!1

½Y1�

½Y0� þ ½Y1�
¼
X

V2S1

Yn

h¼1

ch;vh

 !

: ð20Þ

In fact, we prove an even stronger result that the limit t!1 in Eq 20 is not necessary: that

is, at any t> 0

y ¼
½Y1�

½Y0� þ ½Y1�
: ð21Þ

Proof Given the CRN described in Theorem 4, the rate equations for each input are

d½Xi;j�

dt
¼ � k � ½Xi;j� �

Yn

h¼1;h6¼i

ð½Xh;0� þ ½Xh;1�Þ; j 2 f0; 1g ð22Þ

¼ � k �
½Xi;j�

½Xi;0� þ ½Xi;1�
�
Yn

h¼1

½Xh;0� þ ½Xh;1�
� �

: ð23Þ

Note that k, an arbitrary value, is the rate constant for each reaction. The rate equations for

the output species are,

d½Yj�

dt
¼ k
X

V2Sj

Yn

h¼1

Xh;vh

h i
 !

; j 2 f0; 1g: ð24Þ

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 10 / 26

https://doi.org/10.1371/journal.pone.0281574


We define the following new variables,

pi ¼
½Xi;1�

½Xi;0� þ ½Xi;1�
ð25Þ

qi ¼ ½Xi;0� þ ½Xi;1� ð26Þ

ri;j ¼
1 � pi if j ¼ 0

pi if j ¼ 1

(

ð27Þ

We substitute these variables into the expressions for the concentrations:

½Xi;0� ¼ qið1 � piÞ; ð28Þ

½Xi;1� ¼ qipi; ð29Þ

Therefore; ½Xi;j� ¼ qiri;j: ð30Þ

These substitutions are introduced into Eqs 23 and 24:

d½Xi;j�

dt
¼ � k � ri;j

Yn

h¼1

qh; ð31Þ

d½Yj�

dt
¼ k

Yn

h¼1

qh

 !
X

V2Sj

Yn

h¼1

rh;vh

 !

: ð32Þ

As the concentrations [Xi,j] are functions of time, all p, q, and r are also functions of time.

Consider the following two expressions derived from Eq 31,

d½Xi;0�

dt
¼ � kð1 � piÞ

Yn

h¼1

qh ð33Þ

d½Xi;1�

dt
¼ � k � pi

Yn

h¼1

qh: ð34Þ

Therefore;
dqi
dt

¼
d½Xi;0�

dt
þ

d½Xi;1�

dt
¼ � k

Yn

h¼1

qh: ð35Þ

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 11 / 26

https://doi.org/10.1371/journal.pone.0281574


We also have

½Xi;1� ¼ pi � qi ð36Þ

Therefore;
d½Xi;1�

dt
¼ pi

dqi
dt
þ qi

dpi
dt

ð37Þ

¼ pi � k
Yn

h¼1

qi

 !

þ qi
dpi

dt
ð39Þ

¼
d½Xi;1�

dt
þ qi

dpi

dt
: ð39Þ

As qi 6¼ 0, we conclude that

dpi

dt
¼ 0; ð40Þ

that is, pi is invariant to time. Consequently, ri,j is also invariant to time. This means that the

stochastic value encoded by each pair of input species remains the same throughout the reac-

tion. Therefore, for t> 0, we have

pi ¼ xi ð41Þ

ri;j ¼ ci;j ð42Þ

We assign the new symbol

l ¼
Yn

h¼1

qi

 !

ð43Þ

Therefore;
d½Yj�

dt
¼ k � l

X

V2Sj

Yn

h¼1

rh;vh

 !

: ð44Þ

Finally, we can calculate the stochastic output y as

y ¼

Z t

0

d½Y1�

dt
dt

Z t

0

d½Y0�

dt
dt þ

Z t

0

d½Y1�

dt
dt

ð45Þ

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 12 / 26

https://doi.org/10.1371/journal.pone.0281574


¼

X

V2S1

Yn

h¼1

rh;vh

 !Z t

0

k � l � dt

X

V2S0

Yn

h¼1

rh;vh

 !Z t

0

k � l � dt þ
X

V2S1

Yn

h¼1

rh;vh

 !Z t

0

k � l � dt

ð46Þ

¼

X

V2S1

Yn

h¼1

rh;vh

 !

X

V2S0

Yn

h¼1

rh;vh

 !

þ
X

V2S1

Yn

h¼1

rh;vh

 ! ð47Þ

¼
X

V2S1

Yn

h¼1

rh;vh

 !

: ð48Þ

The numerator in Eq 47 corresponds to the sum of the minterms of all rows of the truth

table F that evaluate 1, while the denominator corresponds to the sum of all minterms. As

ri,j is only dependent on the initial input value, the denominator must sum up to 1 since it

includes all the minterms. Therefore, we conclude that a CRN constructed this way, corre-

sponding to an arbitrary Boolean truth table F, will implement the stochastic function f of

that truth table. The only requirement is that the rate constants of all the reactions must be

equal.

In what follows, we elucidate the proof with an example. In the Supporting Information, we

give CRN implementations of a variety of functions that are of practical interest.

4.1 A demonstrative example

Let us go back to the two-input AND gate from Section 3.

A0 þ B0 !
k C0

A0 þ B1 !
k C0

A1 þ B0 !
k C0

A1 þ B1 !
k C1

ð49Þ

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 13 / 26

https://doi.org/10.1371/journal.pone.0281574


The rate equations for the input and output species are:

d½A0�

dt
¼ � k½A0�ð½B0� þ ½B1�Þ

d½A1�

dt
¼ � k½A1�ð½B0� þ ½B1�Þ

d½B0�

dt
¼ � k½B0�ð½A0� þ ½A1�Þ

d½B1�

dt
¼ � k½B1�ð½A0� þ ½A1�Þ

d½C0�

dt
¼ kð½A0�½B0� þ ½A0�½B1� þ ½A1�½B0�Þ

d½C1�

dt
¼ k½A1�½B1�:

ð50Þ

We introduce some variables to represent the stochastic values,

a ¼
½A1�

½A0� þ ½A1�
; b ¼

½B1�

½B0� þ ½B1�
; c ¼

½C1�

½C0� þ ½C1�
;

as well as the sum of concentrations of each pair of input species,

½A0� þ ½A1� ¼ qa; ½B0� þ ½B1� ¼ qb:

With these variables, Eq 50 becomes:

d½A0�

dt
¼ � kqaqb � ð1 � aÞ

d½A1�

dt
¼ � kqaqb � a

d½B0�

dt
¼ � kqaqb � ð1 � bÞ

d½B1�

dt
¼ � kqaqb � b

d½C0�

dt
¼ kqaqb � ½ð1 � aÞð1 � bÞ þ ð1 � aÞbþ að1 � bÞ�

d½C1�

dt
¼ kqaqb � ab:

ð51Þ

Let us prove the time invariance of a and b. We can express [A1] as a�qa, therefore accord-

ing to the chain rule for derivatives,

d½A1�

dt
¼ qa

da
dt
þ a

dqa
dt
: ð52Þ

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 14 / 26

https://doi.org/10.1371/journal.pone.0281574


According to Eq 51,

dqa

dt
¼

d½A1�

dt
þ

d½A1�

dt
¼ � kqaqb: ð53Þ

From Eqs 51, 52 and 53, we conclude that,

qa
da
dt
¼ 0: ð54Þ

Since, during the process, qa is not a constant equal to 0, we conclude that da
dt ¼ 0. This

proves the time invariance of a, that is to say, during the process, the fractional value encoded

by [A0] and [A1] remains the same. Similarly, we can prove that b is time-invariant.

From here, we can calculate c for t> 0. Assume the initial concentration of [C0] and [C1]

are 0, then

c ¼
½C1�

½C0� þ ½C1�

¼

Z t

0

d½C1�

dt
dt

Z t

0

d½C0�

dt
dt þ

Z t

0

d½C1�

dt
dt

¼

Z t

0

kqaqb � ab � dt
Z t

0

kqaqbdt

¼

ab
Z t

0

kqaqbdt
Z t

0

kqaqbdt
ðsince a; b are constantÞ

¼ ab:

ð55Þ

This proves that an AND gate implements multiplication.

5 Error analysis

We performed simulations to test the robustness of CRNs implementing stochastic functions

with the program Mathematica [37]. The code is given in S2 File. ManuscriptWe generated

differential equations corresponding to the reaction kinetics for CRNs and investigated the

impact of varying reaction rates. Here we present a detailed analysis for a specific CRN, one

that implements the polynomial:

f ðx; y; zÞ ¼ xþ yþ z � 2xy � 2xz � 2yz þ 4xyz: ð56Þ

We deliberately chose this function, a 3-input Exclusive-OR (XOR), as our error case

because the truth table for XOR is balanced in terms of the number of 0’s and 1’s. Accordingly,

it is the most sensitive to random variations in reaction rates. In contrast, for unbalanced func-

tions such as AND or OR, errors can readily be masked: computing more 0’s for AND or

more 1’s for OR may not show up statistically.

This polynomial for this function is generated by the following truth table:

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 15 / 26

https://doi.org/10.1371/journal.pone.0281574


To see this, take the sum of the expressions for the minterms, i.e., the rows that evaluate to

one. Recall that the expression for each row is formed by multiplying together factors corre-

sponding to the input variables: x if the variable x is equal to 1 or 1 − x if the variable x is equal

to 0:

f ðx; y; zÞ ¼ ð1 � xÞð1 � yÞzþ

ð1 � xÞyð1 � zÞþ

ð1 � xÞyð1 � zÞþ

xð1 � yÞð1 � zÞþ

xyz

¼ xþ yþ z � 2xy � 2xz � 2yz þ 4xyz:

ð57Þ

According to the method discussed in Section 3, we can translate this truth table into a

CRN as follows:

X0 þ Y0 þ Z0 !
k1 F0

X0 þ Y0 þ Z1 !
k2 F1

X0 þ Y1 þ Z0 !
k3 F1

X0 þ Y1 þ Z1 !
k4 F0

X1 þ Y0 þ Z0 !
k5 F1

X1 þ Y0 þ Z1 !
k6 F0

X1 þ Y1 þ Z0 !
k7 F0

X1 þ Y1 þ Z1 !
k8 F1

ð58Þ

Note that the indices of the molecular species match the entries in the truth table above.

Since we will be exploring the consequences of non-uniform rate constants, note that here we

have assigned the eight reactions unique rate constants: k1, k2, . . .k8, respectively. We can verify

that this CRN implements the function in Eq 56 through the differential equations. We define

x y z f(x, y, z)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 16 / 26

https://doi.org/10.1371/journal.pone.0281574


the following stochastic variables:

x ¼
½X1�

½X0� þ ½X1�
; y ¼

½Y1�

½Y0� þ ½Y1�
; z ¼

½Z1�

½Z0� þ ½Z1�
; f ¼

½F1�

½F0� þ ½F1�
: ð59Þ

We used the procedure NDSolveValue in Mathematica to simulate the differential equa-

tions corresponding to CRN in Eq 6. We varied the rate constants as well as the initial concen-

trations. We compared the value of f computed by the CRN, in terms of [F0], [F1] to the

expected value of f from Eq 56. Here is a summary of the trials:

5.1 Trials for error analysis

The error was calculated as the absolute difference between the value computed by the CRN

simulation and the expected value of f from Eq 56.

1. With all ki = 100 except for k1 = 1000, i.e., one rate constant being an order of magnitude

higher than the others: the highest error observed was 0.31, with 38.1% of the input combi-

nations having an error greater than 0.1.

2. With all ki = 100 except for k1 = 10, i.e., one rate constant being an order of magnitude

lower than the others: the highest error observed was 0.12, with 15.7% of the input combi-

nations having an error greater than 0.1.

3. With all ki = 100 except for k1 = 10000, i.e., one rate constant being two orders of magnitude

higher than the others: the highest error observed was 0.45, with 45.8% of the input combi-

nations having an error greater than 0.1.

4. With all ki = 100 except for k1 = 1, i.e., one rate being two orders of magnitude lower than

the others: the highest error recorded was 0.12, with 22.7% of the input combinations hav-

ing an error greater than 0.1.

5. With all ki randomly generated, from a normal distribution with a mean of 100 and a low

standard deviation of 10: the highest error recorded was 0.06, with no input combinations

having an error greater than 0.1.

6. With all ki randomly generated, from a normal distribution with a mean of 100 and a high

standard deviation of 70 (negative values were not allowed): the highest error recorded was

0.25, with 14.4% of the input combinations having an error greater than 0.1.

The absolute difference between the output value of f, calculated with Eq 59, compared to

the expected value of f from Eq 56 was calculated for a wide range of input concentrations.

These are graphed in Fig 2. The inputs x, y, and z, calculated with Eq 59, were set to values in

the interval [0, 1] forming a cube mesh input. All input chemical species were initialized such

that [X0] + [X1] = 100. The maximum error difference and the number of input combinations

for which the error differential exceeded 0.1 were recorded. The purpose of this simulation

was not to account for all possible values of the rate constants, but rather to understand the

design constraints and the error margins. The key observations from our simulations are:

1. In a network with many reactions, one rate constant being slower than the others by an

order of magnitude or two has a lower impact on error than if it were faster by a similar

amount.

2. Error rates are low if all the rate constants are within the same order of magnitude and are

distributed normally with a small standard deviation.

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 17 / 26

https://doi.org/10.1371/journal.pone.0281574


3. Error rates are also low when some of the fractional inputs are close to 0 or to 1. This trans-

lates to very slow or very fast reactions, respectively.

4. Even when the rate constants differ by orders of magnitude, not all inputs result in high

errors. Simulation is a valuable guide.

Fig 2. The error cubes for the six trials listed in Section 5.1. The three dimensions in the plots span the inputs x, y,

and z, each in the interval [0, 1], with a step size 0.1. The color of each point corresponds to the absolute difference

between the value computed by the CRN and the expected value of f from Eq 56. A legend is provided for each cube.

The trials were performed with theNDSolveValue function in software tool Mathematica.

https://doi.org/10.1371/journal.pone.0281574.g002

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 18 / 26

https://doi.org/10.1371/journal.pone.0281574.g002
https://doi.org/10.1371/journal.pone.0281574


6 Implementation using DNA

6.1 DNA strand-displacement

DNA strand displacement is a well-established technique for implementing molecular compu-

tation [38, 39]. Prior work has shown that such a system can emulate any abstract set of chemi-

cal reactions. The reader is referred to Soloveichik et al. and Zhang et al. for further details [18,

40]. Here we illustrate a simple, generic example. In Section 6.2, we discuss how to map our

models to such DNA strand-displacement systems.

We begin by first defining a few basic concepts. DNA strands are linear sequences of four

different nucleotides {A, T, C, G}. A nucleotide can bind to another following Watson-Crick
base-pairing: A binds to T, C binds to G. A pair of single DNA strands will bind to each other,

a process called hybridization, if their sequences are complementary according to the base-

pairing rule, that is to say, wherever there is an A in one, there is a T in the other, and vice

versa; and whenever there is a C in one, there is a G in the other and vice-versa. The binding

strength depends on the length of the complementary regions. Longer regions will bind

strongly, smaller ones weakly. Reaction rates match binding strength: hybridization completes

quickly if the complementary regions are long and slowly if they are short. If the complemen-

tary regions are very short, hybridization might not occur at all. (We acknowledge that, in this

brief discussion, we are omitting many relevant details such as temperature, concentration,

and the distribution of nucleotide types, i.e., the fraction of paired bases that are A-T versus

C-G. All of these parameters must be accounted for in realistic simulation runs.)

Fig 3 illustrates strand displacement with a set of reversible reactions. The entire reaction

occurs as reactant molecules A and B form products E and F, with each intermediate stage

operating on molecules C and D. In the figure, A and F are single strands of DNA, while B, C,

D, and E are double-stranded complexes. Each single-strand DNA molecule is divided, con-

ceptually, into subsequences that we call domains, denoted as 1, 2, and 3 in the figure. The

complementary sequences for these domains are 1*, 2* and 3*. (We will use this notation for

complementarity throughout.) All distinct domains are assumed to be orthogonal to each

other, meaning that these domains do not hybridize.

Toeholds are a specific kind of domain in a double-stranded DNA complex where a single

strand is exposed. For instance, the molecule B contains a toehold domain at 1* in Fig 3. Toe-

holds are usually 6 to 10 nucleotides long, while the lengths of regular domains are typically 20

nucleotides. The exposed strand of a toehold domain can bind to the complementary domain

from a longer single DNA strand, and thus toeholds can trigger the binding and displacement

of DNA strands. The small length of the toehold makes this hybridization reversible.

In the first reaction in Fig 3, the open toehold 1* in molecule B binds with domain 1 from

strand A. This forms the molecule C where the duplicate 2 domain section from molecule A
forms an overhanging flap. This reaction shows how a toehold triggers the binding of DNA

strands. In molecule C, the overhanging flap can stick onto the complementary domain 2*,
thus displacing the previously bound strand. This type of branch migration is shown in the

second reaction, where the displacement of one flap to the other forms the molecule D. This

reaction is reversible, and the molecules C and D exist in a dynamic equilibrium. The process

of branch migration of the flap is essentially a random walk: at any time when part of the

strand from molecule A hybridizes with strand B, more of A might bind and displace a part of

F, or more of F might bind and displace a part of A. Therefore, this reaction is reversible. The

third reaction is the exact opposite of reaction 1—the new flap in molecule D can peel off from

the complex and thus create the single-strand molecule F and leave a new double-stranded

complex E. Molecule E is similar to molecule B, but the toehold has migrated from 1* to 3*.
The reaction rate of this reaction depends on the length of the toehold 3*. If we reduce the

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 19 / 26

https://doi.org/10.1371/journal.pone.0281574


length of the toehold, the rate of reaction 3 becomes so small that the reaction can be treated as

a forward-only reaction. This bias in the direction of the reaction means that we can model the

entire set of reactions as a single DNA strand displacement event, where reactants A and B
react to produce E and F. Note that the strand F can now participate in further toehold-medi-

ated reactions, allowing for cascading of such these DNA strand displacement systems.

6.2 DNA concatemers

DNA Concatemers are long strands of DNA that contain repeated base-pair sequences. These

are formed when a single smaller DNA unit is capable of hybridizing with other copies of itself.

Specifically, to form a DNA strand of the form A B A B A B. . ., the 1-mer unit must have the

following 3 regions:

Fig 3. A set of DNA strand displacement reactions. Each DNA single strand is drawn as a continuous arrow, consisting of different

colored domains numbered 1 through 3. DNA domains that are complementary to each other due to A-T, C-G binding are paired as 1

and 1*. The first reaction shows reactants A and B hybridizing together via the toehold at domain 1* on molecule B. The second reaction

depicts branch migration of the overhanging flap of DNA in molecule C, thereby resulting in the nick migrating from after domain 1 to

2. The third reaction shows how an overhanging strand of DNA can be peeled off of molecule D, thereby exposing a toehold at domain

3* on molecule E and releasing a freely floating strand F. All reactions are reversible. The only domains that are toeholds are 1* and 3*.

https://doi.org/10.1371/journal.pone.0281574.g003

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 20 / 26

https://doi.org/10.1371/journal.pone.0281574.g003
https://doi.org/10.1371/journal.pone.0281574


1. A leading sticky end (single-stranded region) on the 1st strand with the sequence A.

2. A middle double-stranded section with the sequence B.

3. A trailing sticky end on the 2nd strand with the complement sequence A
0

such that it can

bind to a leading sticky end for A.

We propose designing our molecules for fractional representation as DNA concatemers

[41] that can interact via strand displacement, as detailed in the next subsection. For a frac-

tional variable a, the molecules A0 and A1 needed for the reaction network can be designed as

concatemer units such that the double-stranded section for each unit is distinct, but the sticky

ends for both of them are the same. This allows the two species to cross-polymerize and forms

a linear chain of DNA of randomly arranged A0 and A1 units. This is similar to the random-

ized digital bitstreams used in stochastic computing in which a random stream of 0’s and 1’s

forms the basic data unit [3, 13]: A0 and A1 correspond to 0 and 1, respectively. Thus a single

fractional variable can be stored as a long DNA strand that can be amplified to improve read-

out [42]; this long strand can then be broken up using artificial restriction enzymes—or natu-

ral restriction enzymes, if the sticky ends are designed purposefully. Furthermore, this

concatemer design allows the use of RNA-seq [43] in the readout process to measure the frac-

tional value stored by a DNA strand. For this purpose, a long DNA concatemer must be bro-

ken into its constituent monomers using a restriction enzyme, and then these smaller DNA

units can be used instead of the standard complementary DNA in RNA-seq to determine the

expression level of each unit. From this quantitative readout, the relative amount of A1 to A0 +

A1 can be determined [44].

6.3 Procedure

Fig 4 illustrates the reaction Ai + Bj! Ck implemented with DNA strand displacement and

cleaving enzymes. Two species of concatemer units are transformed into another concatemer

unit. The implementation consists of three stages:

1. Extracting single strands: Consider the two input concatemers Ai and Bj shown in the fig-

ure. We design the concatemers in such a way that the sticky ends of a concatemer unit can

act like open toeholds in DNA strand displacement. As a result, we can extract a single

strand from a concatemer. For example, concatemer Ai is formed with two single strands

[Ti, Ai], ½A∗
i ;T

∗
1
�. We can add strand [Ai, T1] so that strand [T1, Ai] is displaced. Similarly,

we can extract strand [T2, Bj, T3] from concatemer Bj with strand [Bj, T3, T2].

2. This is the strand displacement reaction that implements the main reaction. It receives two

single-strand DNA molecules, [T1, Ai] and [T2, Bj, T3] as reactants. The product is a com-

plex containing the output concatemer. The reaction is divided into two parts. In the first

part, strand [T1, Ai] displaces strand [Ai, T2] from the auxiliary complex G1 and forms G2

through a reversible reaction. Then the strand [T2, Bj, T3] displaces the output complex

which is formed by strand [Bj, T3, Ck] and ½C∗
k;T

∗
3
�. This step is irreversible since the output

complex cannot bind to the resulting auxiliary complex G3 after this step.

3. Cleaving. The output complex from the previous step contains the domain Bj in addition to

the part that could form concatemer Ck. The domain Bj is cleaved from the complex. After

this step, we get a concatemer Ck with T3 sticky end. Cleaving can be achieved by using

DNA editing enzymes such as CRISPR-Cas9 and PfAgo [45].

We assume that the concentration of the initial auxiliary complex G1 is much larger than

the concentration of the concatemers. With this assumption, the concentration of the auxiliary

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 21 / 26

https://doi.org/10.1371/journal.pone.0281574


Fig 4. An example illustrating strand displacement reactions, implemented using concatemers. The figure is divided into an example sequence of

concatemers, and three reaction steps: 1) extracting a single strand from concatemers; 2) a reaction step that consumes two single strands and outputs a

complex; and 3) cleaving.

https://doi.org/10.1371/journal.pone.0281574.g004

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 22 / 26

https://doi.org/10.1371/journal.pone.0281574.g004
https://doi.org/10.1371/journal.pone.0281574


complex can be treated invariant through the reaction. Thus, the reaction rate only depends

on the concentration of the single strands extracted from the concatemers. As there are four

reactions to implement the two-input network shown in this example, four species of the auxil-

iary complex representing each reaction should be used. This ensures that the mixture of dif-

ferent species of A0 and A1, or B0 and B1, can react competitively. During the cleaving step,

each reactant participates in only one reaction. Therefore, it should not affect the reaction rate

or the fractional encoding of the output by the two product species.

The reaction itself can be extended to a multimolecular reaction by extending the chain of

toehold exchange reactions. Suppose, for example, a new stochastic value d with molecules Dl

and sticky ends T4 were also the input alongside a and b. In the complex G1, domains [T4, Dl]

and their complementary domains would be added between the domains Bj and T3. That is, a

new G1 that would react with single strands of sequence Dl and toehold T4 would be used. In

this way, G1 would be capable of receiving an additional strand [T4, Dl] before displacing the

final product. Therefore multiple input values can be computed upon in our CRNs.

When computing with digital circuits, the length of the bitstream dictates the precision of

the computation. The length of the bitstream can be chosen by the user based on their specifi-

cations. The more precision that they require, the longer the bitstream that they should use. In

our DNA implementation, the concentration of DNA concatemers corresponds to the length

of the bitstreams for the stochastic functions. So the limitation is experimental: how precisely

the user can set and measure the input and output concentrations, respectively.

7 Conclusion

This paper proposed a strategy for computing mathematical functions with molecular systems

based on a fractional representation, using a pair of molecular species to represent each mathe-

matical variable. With this representation, we can apply the theory of stochastic logic design

chemical reaction networks for computing functions. In particular, we showed how to trans-

late the truth tables for stochastic functions into chemical reaction networks. We then demon-

strated how to implement the reaction networks with DNA strand displacement.

Stochastic logic is an intriguing paradigm for digital computation. Instead of computing

definite outputs from definite inputs—say Boolean values from Boolean values, or integers

from integers—it entails computing probabilities from probabilities. There is randomness and

yet the computation is robust. The computation is effected by transforming the statistical dis-
tribution of random bitstreams. The paradigm has been applied in a variety of domains, partic-

ularly for emerging technologies [2, 46–48]. It has been most successful for applications that

entail computing mathematical functions: for instance, arctan for nonlinear activation func-

tions in machine learning; Bessel functions for differential system models; and the sinc func-

tion for image and signal processing. We give examples of CRN implementations of these

functions in the Supporting Information. Of course, we cannot point to real-world applica-

tions that call for the molecular computation of such functions. For now, the ideas in this

paper should be taken as a proof of concept.

Over the past two decades, computing has moved from desktops and data centers into the

wild. Embedded microchips—found in our gadgets, our tools, our buildings, our soils and

even our bodies—are transforming our lives. And yet, there are limits to where silicon can go

and where it can compute effectively. It operates based on voltage and so requires a power

source. Even miniaturized to the microscale or smaller, an electronic system is often a foreign

object inserted into a material, substrate, or environment. This sort of computation discussed

in this paper could find application in a novel class of computing system that is not foreign,

but rather an integral part of its physical and chemical environment: a system that computes

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 23 / 26

https://doi.org/10.1371/journal.pone.0281574


with its constituent molecules. In such a system, sensing, computing, and actuating occur at

the molecular level, with no interfacing at all with external electronics. Futuristic, yes, but we

can point to the field of soft robotics where such systems are being developed [49].

Supporting information

S1 File. Examples of CRNs for polynomial approximations of nonlinear functions. We cal-

culate the CRN for polynomial approximations of various functions such as ArcTan, Exponen-

tial, Bessel, and Sinc.

(PDF)

S2 File. Mathematica script for the error analysis of the 3-input XOR. We use the

NDSolveValue command in Mathematica to simulate the system of differential equations

for the 3-input XOR in Section 5. The script includes the various error analyses and image

printing commands.

(PDF)

Acknowledgments

We thank David Soloveichik, Olgica Milenkovic, Andrew Ellington for helpful discussions. In

particularly, we thank Andrew Ellington for suggesting that we use DNA “concatemers.”

Author Contributions

Conceptualization: Marc Riedel.

Formal analysis: Tonglin Chen, Marc Riedel.

Investigation: Marc Riedel.

Software: Arnav Solanki.

Supervision: Marc Riedel.

Visualization: Arnav Solanki.

Writing – original draft: Arnav Solanki, Tonglin Chen, Marc Riedel.

Writing – review & editing: Marc Riedel.

References
1. Von Neumann J. Probabilistic logics and the synthesis of reliable organisms from unreliable compo-

nents. Automata studies. 1956; 34:43–98.

2. Shanbhag NR, Abdallah RA, Kumar R, Jones DL. Stochastic computation. In: Proceedings of the 47th

Design Automation Conference; 2010. p. 859–864.

3. Gaines B. Stochastic Computing Systems. In: Advances in Information Systems Science. vol. 2. Ple-

num Press; 1969. p. 37–172.

4. Poppelbaum WJ, Dollas A, Glickman JB, Otoole C. Statistical Processors. In: Yovits MC, editor.

Advances in Computers. vol. 17. Elsevier; 1976. p. 187–230.

5. Brown B, Card H. Stochastic Neural Computation I: Computational Elements. IEEE Transactions on

Computers. 2001; 50(9):891–905. https://doi.org/10.1109/12.954505

6. Qian W, Riedel MD. The Synthesis of Robust Polynomial Arithmetic with Stochastic Logic. In: Design

Automation Conference; 2008. p. 648–653.

7. Alaghi A, Hayes JP. Survey of Stochastic Computing. ACM Transaction on Embedded Computing.

2013; 12.

8. Qian W, Riedel MD, Zhou H, Bruck J. Transforming Probabilities with Combinational Logic. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems (to appear). 2011;.

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 24 / 26

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281574.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281574.s002
https://doi.org/10.1109/12.954505
https://doi.org/10.1371/journal.pone.0281574


9. Ardakani A, Leduc-Primeau F, Onizawa N, Hanyu T, Gross WJ. VLSI Implementation of Deep Neural

Network Using Integral Stochastic Computing. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems. 2017; 25(10):2688–2699. https://doi.org/10.1109/TVLSI.2017.2654298

10. Cushon K, Leroux C, Hemati S, Mannor S, Gross WJ. A Min-Sum Iterative Decoder Based on Pulse-

width Message Encoding. IEEE Transactions on Circuits and Systems II: Express Briefs. 2010; 57

(11):893–897.

11. Najafi MH, Jenson D, Lilja DJ, Riedel MD. Performing Stochastic Computation Deterministically. IEEE

Tran on Very Large Scale Integration (VLSI) Systems. 2019. https://doi.org/10.1109/TVLSI.2019.

2929354

12. Qian W. Digital yet Deliberately Random: Synthesizing Logical Computation on Stochastic Bit Streams;

2011.

13. Qian W, Li X, Riedel MD, Bazargan K, Lilja DJ. An Architecture for Fault-Tolerant Computation with Sto-

chastic Logic. IEEE Transactions on Computers. 2011; 60(1):93–105. https://doi.org/10.1109/TC.2010.

202

14. Najafi MH, Li P, Lilja DJ, Qian W, Bazargan K, Riedel M. A Reconfigurable Architecture with Sequential

Logic-Based Stochastic Computing. J Emerg Technol Comput Syst. 2017; 13(4):57:1–57:28. https://

doi.org/10.1145/3060537

15. Adleman L. Molecular Computation of Solutions to Combinatorial Problems. Science. 1994; 266

(11):1021–1024. https://doi.org/10.1126/science.7973651 PMID: 7973651

16. Cook M, Soloveichik D, Winfree E, Bruck J. Programmability of Chemical Reaction Networks. In: Con-

don A, Harel D, Kok JN, Salomaa A, Winfree E, editors. Algorithmic Bioprocesses. Springer; 2009.

p. 543–584.

17. Soloveichik D, Cook M, Winfree E, Bruck J. Computation with Finite Stochastic Chemical Reaction Net-

works. Natural Computing. 2008; 7(4). https://doi.org/10.1007/s11047-008-9067-y

18. Soloveichik D, Seelig G, Winfree E. DNA as a Universal Substrate for Chemical Kinetics. Proceedings

of the National Academy of Sciences. 2010; 107(12):5393–5398. https://doi.org/10.1073/pnas.

0909380107 PMID: 20203007

19. Qian L, Winfree E. A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits. In: DNA Computing;

2009. p. 70–89.

20. Jiang H, Riedel MD, Parhi KK. Digital Signal Processing with Molecular Reactions. IEEE Design & Test

of Computers. 2012; 29(3):21–31. https://doi.org/10.1109/MDT.2012.2192144

21. Jiang H, Salehi SA, Riedel MD, Parhi KK. Discrete-Time Signal Processing with DNA. ACS Synthetic

Biology. 2013; 2(5):245–254. https://doi.org/10.1021/sb300087n PMID: 23654264

22. Stojanovic MN, Stefanovic D, Rudchenko S. Exercises in molecular computing. Accounts of chemical

research. 2014; 47(6):1845–1852. https://doi.org/10.1021/ar5000538 PMID: 24873234

23. Salehi SA, Riedel MD, Parhi KK. Chemical Reaction Networks for Computing Polynomials. ACS Syn-

thetic Biology. 2017; 6(1). https://doi.org/10.1021/acssynbio.5b00163 PMID: 27598466

24. Salehi SA, Liu X, Riedel MD, Parhi KK. Computing Mathematical Functions using DNA via Fractional

Coding. Nature Scientific Reports. 2018; 8 (8312). https://doi.org/10.1038/s41598-018-26709-6 PMID:

29844537

25. Bernstein SN. Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Com-

munications of the Kharkov Mathematical Society. 1912; 13:1–2.

26. Qian W, Riedel MD, Rosenberg I. Uniform Approximation and Bernstein Polynomials with Coefficients

in the Unit Interval. European Journal of Combinatorics. 2011; 32(3):448–463. https://doi.org/10.1016/j.

ejc.2010.11.004

27. Horn F, Jackson R. General mass action kinetics. Archive for rational mechanics and analysis. 1972; 47

(2):81–116. https://doi.org/10.1007/BF00251225

28. Parhi M, Riedel MD, Parhi K. Effect of Bit-Level Correlation in Stochastic Computing. 2015 IEEE Inter-

national Conference on Digital Signal Processing (DSP). 2015;463–467.

29. Parker KP, McCluskey EJ. Probabilistic Treatment of General Combinational Networks. IEEE Transac-

tions on Computers. 1975; 24(6):668–670. https://doi.org/10.1109/T-C.1975.224279

30. Savir J, Ditlow G, Bardell PH. Random Pattern Testability. IEEE Transactions on Computers. 1984; 33

(1):79–90. https://doi.org/10.1109/TC.1984.5009315

31. Liou JJ, Cheng KT, Kundu S, Krstic A. Fast Statistical Timing Analysis by Probabilistic Event Propaga-

tion. In: Design Automation Conference; 2001. p. 661–666.

32. Marculescu R, Marculescu D, Pedram M. Logic Level Power Estimation Considering Spatiotemporal

Correlations. In: International Conference on Computer-Aided Design; 1994. p. 294–299.

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 25 / 26

https://doi.org/10.1109/TVLSI.2017.2654298
https://doi.org/10.1109/TVLSI.2019.2929354
https://doi.org/10.1109/TVLSI.2019.2929354
https://doi.org/10.1109/TC.2010.202
https://doi.org/10.1109/TC.2010.202
https://doi.org/10.1145/3060537
https://doi.org/10.1145/3060537
https://doi.org/10.1126/science.7973651
http://www.ncbi.nlm.nih.gov/pubmed/7973651
https://doi.org/10.1007/s11047-008-9067-y
https://doi.org/10.1073/pnas.0909380107
https://doi.org/10.1073/pnas.0909380107
http://www.ncbi.nlm.nih.gov/pubmed/20203007
https://doi.org/10.1109/MDT.2012.2192144
https://doi.org/10.1021/sb300087n
http://www.ncbi.nlm.nih.gov/pubmed/23654264
https://doi.org/10.1021/ar5000538
http://www.ncbi.nlm.nih.gov/pubmed/24873234
https://doi.org/10.1021/acssynbio.5b00163
http://www.ncbi.nlm.nih.gov/pubmed/27598466
https://doi.org/10.1038/s41598-018-26709-6
http://www.ncbi.nlm.nih.gov/pubmed/29844537
https://doi.org/10.1016/j.ejc.2010.11.004
https://doi.org/10.1016/j.ejc.2010.11.004
https://doi.org/10.1007/BF00251225
https://doi.org/10.1109/T-C.1975.224279
https://doi.org/10.1109/TC.1984.5009315
https://doi.org/10.1371/journal.pone.0281574


33. Jenson D, Riedel M. A deterministic approach to stochastic computation. In: 2016 IEEE/ACM Interna-

tional Conference on Computer-Aided Design (ICCAD); 2016. p. 1–8.

34. Qian L, Winfree E. Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades.

Science. 2011; 332(6034):1196–1201. https://doi.org/10.1126/science.1200520 PMID: 21636773

35. Cherry KM, Qian L. Scaling Up Molecular Pattern Recognition with DNA-based Winner-Take-All Neural

Networks. Nature. 2018; 559(7714):370–376. https://doi.org/10.1038/s41586-018-0289-6 PMID:

29973727

36. Salehi SA, Jiang H, Riedel MD, Parhi KK. Molecular Sensing and Computing Systems. IEEE Transac-

tions on Molecular, Biological and Multi-Scale Communications. 2015; 1(3):249–264. https://doi.org/10.

1109/TMBMC.2016.2537301

37. Wolfram S. Mathematica: a system for doing mathematics by computer. Addison Wesley Longman

Publishing Co., Inc.; 1991.

38. Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Neumann J. A DNA-fuelled molecular machine made

of DNA. Nature. 2000; 406:605–608. https://doi.org/10.1038/35020524 PMID: 10949296

39. Seelig G, Soloveichik D, Zhang DY, Winfree E. Enzyme-Free Nucleic Acid Logic Circuits. In: Science.

vol. 314; 2006. p. 1585–1588.

40. Zhang DY, Seelig G. Dynamic DNA nanotechnology using strand-displacement reactions. Nature

chemistry. 2011; 3(2):103–113. https://doi.org/10.1038/nchem.957 PMID: 21258382

41. Sun L, Åkerman B. Characterization of self-assembled DNA concatemers from synthetic oligonucleo-

tides. Computational and structural biotechnology journal. 2014; 11(18):66–72. https://doi.org/10.1016/

j.csbj.2014.08.011 PMID: 25379145

42. Schlecht U, Mok J, Dallett C, Berka J. ConcatSeq: A method for increasing throughput of single mole-

cule sequencing by concatenating short DNA fragments. Scientific reports. 2017; 7(1):1–10. https://doi.

org/10.1038/s41598-017-05503-w PMID: 28701704

43. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews

genetics. 2009; 10(1):57–63. https://doi.org/10.1038/nrg2484 PMID: 19015660

44. Zuckermann M, Hlevnjak M, Yazdanparast H, Zapatka M, Jones DT, Lichter P, et al. A novel cloning

strategy for one-step assembly of multiplex CRISPR vectors. Scientific reports. 2018; 8(1):1–8. https://

doi.org/10.1038/s41598-018-35727-3 PMID: 30504793

45. Tabatabaei SK, Wang B, Athreya NBM, Enghiad B, Hernandez AG, Fields CJ, et al. DNA punch cards

for storing data on native DNA sequences via enzymatic nicking. Nature communications. 2020; 11

(1):1–10. https://doi.org/10.1038/s41467-020-15588-z PMID: 32269230

46. Venkatesan R, Venkataramani S, Fong X, Roy K, Raghunathan A. Spintastic: <u>Spin</u>-Based

S<u>T</u>Och<u>Astic</u> Logic for Energy-Efficient Computing. In: Proceedings of the 2015

Design, Automation and Test in Europe Conference. DATE’15. San Jose, CA, USA: EDA Consortium;

2015. p. 1575–1578.

47. Jia X, Wang Y, Huang Z, Zhang Y, Yang J, Qu Y, et al. In: Spintronic Solutions for Stochastic Comput-

ing; 2019. p. 165–183.

48. Najafi MH, Lilja DJ. High-Speed Stochastic Circuits Using Synchronous Analog Pulses. In: ASP-DAC

2017, 22nd Asia and South Pacific Design Automation Conference; 2017.

49. Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature. 2015; 521(7553):467–75.

https://doi.org/10.1038/nature14543 PMID: 26017446

PLOS ONE Computing mathematical functions with chemical reactions via stochastic logic

PLOS ONE | https://doi.org/10.1371/journal.pone.0281574 May 8, 2023 26 / 26

https://doi.org/10.1126/science.1200520
http://www.ncbi.nlm.nih.gov/pubmed/21636773
https://doi.org/10.1038/s41586-018-0289-6
http://www.ncbi.nlm.nih.gov/pubmed/29973727
https://doi.org/10.1109/TMBMC.2016.2537301
https://doi.org/10.1109/TMBMC.2016.2537301
https://doi.org/10.1038/35020524
http://www.ncbi.nlm.nih.gov/pubmed/10949296
https://doi.org/10.1038/nchem.957
http://www.ncbi.nlm.nih.gov/pubmed/21258382
https://doi.org/10.1016/j.csbj.2014.08.011
https://doi.org/10.1016/j.csbj.2014.08.011
http://www.ncbi.nlm.nih.gov/pubmed/25379145
https://doi.org/10.1038/s41598-017-05503-w
https://doi.org/10.1038/s41598-017-05503-w
http://www.ncbi.nlm.nih.gov/pubmed/28701704
https://doi.org/10.1038/nrg2484
http://www.ncbi.nlm.nih.gov/pubmed/19015660
https://doi.org/10.1038/s41598-018-35727-3
https://doi.org/10.1038/s41598-018-35727-3
http://www.ncbi.nlm.nih.gov/pubmed/30504793
https://doi.org/10.1038/s41467-020-15588-z
http://www.ncbi.nlm.nih.gov/pubmed/32269230
https://doi.org/10.1038/nature14543
http://www.ncbi.nlm.nih.gov/pubmed/26017446
https://doi.org/10.1371/journal.pone.0281574

