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Abstract—Simple stochastic logic gates can compute complex
functions using stochastic computing. A stochastic number is
encoded by a unary bit stream where each bit is 0 or 1. The
value of the number is represented by the percent of 1’s in
the number, and is interpreted as a probability. Each bit of
the stochastic number can be modeled as a Bernoulli random
variable, and each stochastic number can be represented by a
binomial random variable. The variance of a stochastic number
is given by p(1 — p)/N where N represents the number of bits
in the sequence, and p represents the mean value of the number.
For long word-lengths, a binomial random variable behaves as a
Gaussian random variable. The mean and variance of a two-input
stochastic logic gate are dependent on the bit-level correlation
of the two inputs. This paper derives closed-form expressions
for mean and variance of two-input stochastic logic gates with
correlated inputs. An approach to synthesize correlated stochastic
bit streams with specified correlation from uncorrelated bit
streams is also presented. Using the proposed synthesis method,
stochastic logic gates are simulated with correlated inputs. The
simulated values of means and variances are shown to be the
same as the theoretical values; thus, the closed-form expressions
are validated.

I. INTRODUCTION

Stochastic Computing (SC) was proposed in 1967 by
Gaines [1] [2]. SC was proposed as an alternative approach
to binary computing. SC uses a unary system as opposed to
a weighted system. A number is represented by a string of
I’s and 0’s where the percent of 1’s in the number represents
the value of the number as a probability. Computing using
stochastic logic requires significantly less hardware compared
to traditional binary arithmetic. However, these circuits suffer
from a significant increase in latency. This is because the
number of bits used to represent a number is typically very
large. For example, a 10-bit binary number can represent
1024 levels. To achieve the same resolution, a stochastic
number should be represented using 1024 bits. The stochastic
computing systems are ideal for low-speed applications such
as neural networks [3], for decoding error-control codes such
as low-density parity check codes and polar codes [4]-[6],
for digital filters [7]-[9], cyber-physical systems operating at
very low rates, and biomedical applications. Stochastic logic
gates compute an approximate value of the result, as opposed
to the exact value. In many applications, such as machine
learning, where a decision is made based on a thresholding
operation, the decisions may not be affected by approximate
computing. A main advantage of stochastic computing is its
inherent tolerance to faults in CMOS circuits.

The stochastic bit stream is represented using a string of
I’'s and 0’s where each bit is assumed to be independent
of the other bits, i.e., the bits are assumed to be random.
This randomness corresponds to temporal independence, i.e.,
the bits at different positions (or times) are uncorrelated.
Closed-form expressions for stochastic logic outputs have been
derived for uncorrelated inputs in [10]. Synthesis of logic
gates to compute specified probabilities from uncorrelated bit
streams has been proposed in [11] [12]. However, the bit-level
correlation between the two inputs to a stochastic logic gate
affects the expected value of the output. Recently, the notion
of stochastic correlation has been introduced in [13] and has
been used to generate correlated bit streams using probabilistic
transfer matrices. In contrast, the proposed work presents
a method to generate correlated bit streams using Pearson
correlation. Although the Pearson correlation coefficient, p,
lies between -1 and 1, the p of two stochastic bit streams is
restricted to a narrower range; this range is dependent on the
expected values of the stochastic inputs.

This paper makes two key contributions. First, closed-form
expressions are derived for mean and variance of outputs
of two-input stochastic logic gates as functions of the input
probabilities and the spatial correlation between the inputs. To
prove the theoretical expressions by simulations, it is necessary
to generate correlated bit streams for a specified correlation.
However, generation of correlated stochastic bit streams has
not been addressed in prior work. The second contribution
of this paper is a novel approach to generate correlated bit
streams. Finally the validity of the theoretical expressions is
demonstrated through simulations of stochastic logic gates
using correlated bit streams.

This paper is organized as follows. In Section II closed-form
expressions for outputs of stochastic logic gates with corre-
lated inputs are derived. Section III presents an approach to
synthesize correlated stochastic bit streams from uncorrelated
bit streams. Section IV compares stochastic outputs computed
theoretically and from simulations.

II. ANALYSIS OF STOCHASTIC LOGIC WITH CORRELATED
INPUTS

Each input bit of a stochastic bit stream is assumed to be
an independent identically distributed (IID) Bernoulli random
variable with the probability of one equal to p. Thus, the
stochastic number is represented by a Binomial random vari-
able with variance, 2 = p(1 — p)/N where N represents the



number of bits in the word. Thus, the variance is maximum
at p = 0.5 and is minimum at p=0or p= 1.
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Fig. 1: An example of multiplication using an AND gate

Correlation in bit streams alters the expected output of a
stochastic logic circuit from that with independent bit streams.
This will be discussed further in this section. Consider the
multiplication of two stochastic numbers, X; and X, using an
AND gate as shown in Figure 1. The probabilities of the two
bit streams, denoted as p; and py, are assumed to be 0.5 and
0.3333, with word-length of 6 bits. Let Y denote the output. If
X, and X, are uncorrelated, the output probability is given by
E(Y) = p1 X p2. In this example the output value is 0.1666. If
the bits of the two inputs are correlated, the expected value of
the output can be derived from the definition of the bit-level
correlation coefficient:

o= E(Y) —pip» )
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where p; and p, represent the mean values of the two
stochastic inputs X; and X5, and o7 and oy, respectively,
represent the bit-level standard deviations of X; and Xs. The
expected value of the output, Y, is given by:

E(Y) = E(XX3) 2
= pip2 + poio2
= pip2 + pv/Prp2(1 — p1)(1 — p2)

If the two bit-streams, X; and X5 are identical, then p; =
p2 and p is one, and E(Y) = p1 = pa.

Consider a two-input OR gate with uncorrelated inputs. The
mean value of its output is given by p; + pa — p1p2 Where p;
and py, respectively, represent the expected values of X; and
Xs. If Xy and X5 are correlated with correlation coefficient
p, using (1), the mean output of the OR gate can be calculated
as:

E(Y)=E(X +X; - X, X5) 3)
=p1+Dp2—Ppip2 — poi0a.

The expected output of an XOR gate can be similarly
computed as:

E(Y) = p1 + p2 — 2p1p2 — 2p0o109.

The output of a MUX is unaffected by correlation of input
signals. Let the input signals be denoted as X; and X5, and
the select signal be denoted as X3. Let the stochastic values

of these three signals be, respectively, given by p1, po, and ps.
The mean output of the MUX, Y is given by:

E(Y) = p1 — p1ps + paps. 4

Although the mean output is unaffected by correlation between
X7 and Xo, it can be affected by the correlation between the
control signal, X3, and either or both input signals, X; or X,.

The mean outputs of other stochastic logic gates can be
derived in a similar manner. Table I lists the mean outputs
of various stochastic logic gates without and with input
correlation.

III. SYNTHESIZING CORRELATED BIT STREAMS

To verify the results of Table 1, it is necessary to synthesize
two correlated bit streams for specified mean values and
correlation coefficient. An approach to synthesize correlated
stochastic bit streams from uncorrelated bit streams is pre-
sented in this section.

Let p1, p2 and p, respectively, represent the mean values
of stochastic numbers X, X5, and their bit-level correlation
coefficient. A joint probability mass function (pmf) of X; and
X, is described in Table II, where the only unknown is a.
The parameter a describes the probability that X; = 1 and
X5 =1, and can be derived from the correlation coefficient,

P

TABLE II: The joint Probability Mass Function (PMF) for X,
and X,

Input Signal Probability
x1 =0,290 =0 1—p1—p2+a
1 =029 =1 P2 —a
z1=1,22 =0 p—a
1 =120 =1 a

Since all values in Table II represent probabilities, these
must be non-negative. This is guaranteed by the constraints:

e a > O
o a < P2
e a <P
e a>pr+p2—1
From the definition of the bit-level correlation coefficient, p,
given by:
o= a—pip2 (5)
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the parameter a can be obtained as:

a=p1p2 + po102 (6)
=pip2 + p/pip2(1 — p1)(1 — p2).

Note that although the correlation coefficient, p, lies be-
tween —1 and 1, the above constraints limit the allowable
range of p. For example, if p; = .3, and p; = 0.8, the range
of a is constrained to the range [0.1, 0.3]. This limits the range
of p to [—0.7638,0.3273].

The two correlated stochastic bit streams, X; and X5, can
be synthesized from two uncorrelated bit streams, denoted as
R; and R5, where each bit of B, and R is a uniform random
variable between 0 and 1. The proposed approach makes use



TABLE I: Closed form Expressions for Single Input Gates

Gate type Independent Correlated
AND p1p2 p1p2 + poi10og
AND (X inverted) p2(1 —p1) P2 — P1P2 — PO102
NAND 1 —pip2 1 —pip2 — po1o2
OR p1 + P2 — p1p2 p1 + P2 — P1P2 — PO102
OR (X inverted) p2+ (1 —p1) —p2(1 —p1) 1 —p1 +pip2 + poio2
NOR (1 —p)(1 —p2) 1—p1 —p2 +p1p2 + poiog
XOR P1+ p2 — 2p1p2 p1 +p2 — 2p1p2 — 2po102
XOR (X inverted) 1—p1—p2+2pip2 1—p1 —p2+2p1p2 + 2po102
XNOR 1—p1—p2+2pip2 1—p1 —p2+2p1p2 +2po102
MUX (X3 select signal) P1 — p1p3 + p2ps p1 — p1P3 + p2ps3
MUX (X3 select signal with X inverted) 1 —p1 —p3 +p1ps + p2ps 1—p1 —p3+pips + p2ps

of marginal probability and conditional marginal probability.
First R; is used to generate X; using marginal probability
of X;. Then, X, is generated from R, using conditional
marginal probability of X, conditioned to selection of X;.
The approach to generating X; follows the principle of
stochastic number generator (SNG). If the probability of first
uncorrelated bit stream, R, is greater then py, then X; = 0,
otherwise X; = 1. X is synthesized by using the conditional
probability of X, given X;, which is:

P(X3|Xy) = %

Assume that X; = 1 is given. we obtain P(Xs = 1|X; =
1) = a/p;. If Ry > a/py, then X3 = 0. Otherwise, X5 = 1.
Given that X; = 0 is generated, the conditional probability
will be P(X2 = 1‘X1 = O) = (p2 — (1)/(1 — pl) Then
Xy = 01if Ry > (p2 — a)/(1 — p1). Otherwise Xo = 1.
Figure 2 shows the decision tree to synthesize two correlated
stochastic bit steams with specified py, pa and p. Every bit of
two stochastic sequences is generated using this decision tree.
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IV. SIMULATION RESULTS

Stochastic bit streams with and without correlation are
input stochastic logic gates. The difference in their outputs
is referred as Deviation D. Using Monte Carlo experiments, a
histogram of D is constructed and its mean and standard devi-
ation are obtained from simulation. These are then compared
with theoretical values predicted from Table I.

TABLE II: Error Analysis

Gate type Error
AND pPo109
NAND —po109
OR —po102
NOR pPo102
XOR —2po102
XNOR 2pc102

The mean values of the deviation for each gate are shown
in Table III. This deviation is found by subtracting expected
values with correlation from without using Table 1. The
standard deviation can be computed as a function of the length
of the bit stream. Consider an AND gate as an example. Let the
two mean values be given by 0.4 and 0.5 and the correlation

coefficient be given by 0.2. The mean value of the output is
simulated with and without correlation for a word-length of
100 bits with 2000 Monte Carlo runs. Figure 3 illustrates the
histogram of the output value for correlated inputs.
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Fig. 3: The histogram for a 100 bits and 2000 experiments for
independent bit streams.
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Fig. 4: The histogram shows the error of the correlated bit
streams.

The expected output for the AND gate with correlated inputs
is given by:

V0.4 x 05 x 0.6 x 05
100

Y = p1pa+poioy = 0.240.2% =.2489
Using (8):
E(Deviation) = § —y = .2489 — .2 = .0489 (8)
This can also be written as:
E(Deviation) = p1pa + po102 — p1p2 = po1oa (9)

The standard deviation of the Deviation can be calculated

using 1/p(1 —p)/N using p = 0.2489 and N = 100, and
is given by 0.0432. The Deviation histogram is shown in Fig.

4. This histogram is in agreement with the predicted value.



R,

>(p2-a)/(1-p1) <(p2-a)/(1-p1)

X;=0 X;=1

<m
X1 =1
R,
>a/p; <alp
X;=0 X;=1

Fig. 2: Method of synthesizing two correlated bit streams.

V. ANALYSIS OF TWO-LEVEL STOCHASTIC LOGIC

This section illustrates theoretical computation of mean
output of two-level stochastic logic circuits with correlated
inputs. Consider the two-level stochastic logic example shown
in Figure 5. In this figure, Xs is a common input to the
two AND gates in the first level. We also assume x5 to
be independent of z; and z3. Let xz; and w3 be correlated
with a correlation coefficient p. Let X7, X5, and X3 have
probabilities of py, pa, and ps, respectively. Using Figure 3,
we can find the £(Z) by the following derivation:

E(Y1) = E(X1X2) = pip2
E(Y;) = E(X2X3) = paps

Using the equation for the output of the AND gate with
correlation:

E(Z) = E(Y;Y2)

= p1paps + piva \/p1p§p3(1 — p1p2)(1 — paps)

= <p1p2p3 + pvivs VP1pa(l — pip2)(1 — png))

Note that the bit-level correlation between Y7 and Y5 is given
by pv,v,. It can be shown that:

~ pips(1 = p2) + py/pips(1 — p1)(1 — ps)
PY1Y, =
VP13 (1 — pip2)(1 — paps)

Further note if p is 0, then E(Z) = p1paps. Fig. 6 shows a
circuit that is equivalent to Fig. 5.
For Figure 6, E£(Z) can be computed as follows:

E(Y1) = pips + pv/p1ps(1 — p1)(1 — ps)

E(Z) = B(X3Y) = pa(pips + pv/Pipa(1 — p1)(1 — p3))

If p is 0, then E(Z) = p1paps.
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Fig. 5: Two-level Stochastic Logic Gate
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Fig. 6: Two-level Stochastic Logic Gate

VI. CONCLUSION

This paper has presented closed-form expressions for mean
values of two-input stochastic logic gates with correlated
inputs. A method to generate two correlated bit streams has
been presented. Simulation results using synthesized correlated
bit streams validate the theoretical expressions derived for
the mean and variance values. Future work will be directed
towards derivation of mean values of three-input logic gates,
and for multi-level stochastic logic.
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