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peptide-MHC binding

Arnav Solanki1*, Marc Riedel1, James Cornette2,
Julia Udell1,3 and George Vasmatzis3

1Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis,
MN, United States, 2Department of Mathematics, Iowa State University, Ames, IA, United States,
3Biomarker Discovery Group, Mayo Clinic, Center for Individualized Medicine, Rochester, MN,
United States
Major Histocompability Complex (MHC) Class I molecules allow cells to

present foreign and endogenous peptides to T-Cells so that cells infected by

pathogens can be identified and killed. Neural networks tools such as NetMHC-

4.0 and NetMHCpan-4.1 are used to predict whether peptides will bind to

variants of MHC molecules. These tools are trained on data gathered from

binding affinity and eluted ligand experiments. However, these tools do not

track hydrophobicity, a significant biochemical factor relevant to peptide

binding, in their predictions. A previous study had concluded that the

peptides predicted to bind to HLA-A*0201 by NetMHC-4.0 were much more

hydrophobic than expected. This paper expands that study by also focusing on

HLA-B*2705 and HLA-B*0801, which prefer binding hydrophilic and balanced

peptides respectively. The correlation of hydrophobicity of 9-mer peptides

with their predicted binding strengths to these various HLAs was investigated.

Two studies were performed, one using the data that the two neural networks

were trained on, and the other using a sample of the human proteome.

NetMHC-4.0 was found to have a statistically significant bias towards

predicting highly hydrophobic peptides as strong binders to HLA-A*0201 and

HLA-B*2705 in both studies. Machine Learning metrics were used to identify

the causes for this bias: hydrophobic false positives and hydrophilic false

negatives. These results suggest that the retraining the neural networks with

biochemical attributes such as hydrophobicity and better training data could

increase the accuracy of their predictions. This would increase their impact in

applications such as vaccine design and neoantigen identification.
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1 Introduction

The Human Leukocyte Antigen (HLA) gene system encodes

cell-surface proteins that play a key role in the immune system.

HLA proteins of Major Histocompatibility Complex (MHC)

Class I allow nucleated cells to present peptides from within the

cell (1). In these cells, endogenous proteins are eventually broken

down into small peptides, 8-15 amino acids long, by the

proteasome. These antigens are then trafficked to and loaded

onto MHC Class I molecules. If sufficient binding affinity is

achieved then a stable peptide-MHC (pMHC) complex is

formed and transported to the cell surface. Self-peptides,

antigens encoded in the human proteome, and foreign

peptides, derived from pathogenic proteins, can thus be

presented. By surveilling these extracellular pMHCs, CD8+ T-

cells can distinguish normal cells from pathogen-infected cells,

and kill the latter.

The mechanics of peptide binding are specific to a given

MHC variant. The HLA genes are among the most diverse in the

human population (2). Thus the set of all antigens presented by

a person’s MHCs, labelled as their immunopeptidome, is unique

and determines the capacity of their immune system. Since the

immune response of a person to a viral infection like COVID-19,

for instance, is dependent on whether the foreign antigens

presented by their MHCs are distinguishable from self-

peptides, understanding and predicting pMHC binding is an

important topic. In this paper, we have focused on NetMHC-4.0

(3) and NetMHCpan-4.1 (4), two state-of-the-art neural

network based methods that predict pMHC binding. Both

software tools have been applied in predicting cancer immune

escape mechanisms (5), checkpoint blockade immunotherapy

for tumors (6), and identifying COVID-19 T-cell response

targets (7).

While these tools provide valuable pMHC predictions, they

do not model pMHC binding at the molecular level or capture

the ent ire ant igen presentat ion pathway ’s effects .

Hydrophobicity is a measure of how repulsive a molecule is to

water, often a consequence of nonpolarity. It plays a vital role in

protein binding – for example, the MHC molecule HLA-A*0201

(A2) contains hydrophobic binding pockets that bind to

correspondingly hydrophobic amino acids (8). In contrast, the

MHC HLA-B*2705 (B27) prefers to bind peptides with a

hydrophilic amino acid in one of its pockets (9). Historically,

immunopeptidomes have been predicted by modelling the

interaction of the MHC binding pocket and peptide,

particularly focusing on biochemical attributes such as

sidechain conformations, solvation energies, electrostatic

interactions, and hydrophobicity (10, 11). However with

improved computing power, larger datasets, and the need for

interpolation due to the high polymorphism in MHC Class I

alleles (12), artificial intelligence based methods have become

popular over such mechanistic means of prediction. As

NetMHC-4.0 and NetMHCpan-4.1 are trained with sequence
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data and binding scores only, they lack the means of modelling

these biochemical attributes. Other software tools such as ANN-

Hydro (13) have utilized hydrophobicity in their immunogenic

predictions, but do not predict binding affinity and are

outperformed by NetMHCpan (14). In our use of NetMHC-

4.0 we had observed a prevalence of highly hydrophobic peptides

in the predicted A2 immunopeptidome. We had found this

contrary to our expectations, since peptides in which all amino

acids are hydrophobes would not dissolve in the aqueous cytosol

within the cell and would thus likely not be available for binding

with the MHC. We had therefore sought to investigate the

possibility that these tools were over-estimating binding scores

for such hydrophobic peptides. In a previous study (15), we had

tested these tools’ predictions on A2 and observed hydrophobic

biases that suggested a false positive problem in NetMHC-4.0.

Here, we expanded that study to look at multiple HLAs with

different binding preferences in more detail. Once again, we

conducted two analyses on both NetMHC-4.0 and

NetMHCpan-4.1, one using training data and the other using

a sample of the human proteome, to investigate the correlation

of predicted strong binders and hydrophobicity. We present our

results and highlight the unintended bias within NetMHC-4.0

for predicting hydrophobic peptides as strong binders, and for

predicting hydrophilic peptides as non-binders.
2 Methods

NetMHC-4.0 and NetMHCpan-4.1 allow users to input a list

of peptides or whole proteins, and test the binding of all peptides

with a chosen MHC molecule. Both tools return an adjusted

score between 0 (for non-binders) and 1 (for strong binders) for

all peptides. A notable distinction between the two is that

NetMHC is limited to predicting binding for MHC variants it

is trained on, i.e. curated MHCs. In contrast, NetMHCpan is

capable of interpolating predictions for uncurated MHCs if users

provide the MHC amino acid sequence. This is achieved through

the integration of MHC sequence as a data feature in training,

and by a larger training dataset generated using a sophisticated

machine learning method called NNAlign_MA (16).

NetMHCpan-4.1 consists of an ensemble of 50 neural

networks, each with hidden layers containing 55 and 66

neurons, that were trained using 5-fold cross validation.

NetMHC-4.0 consists of 20 neural networks, each with a

single hidden layer of 5 neurons, that were trained using a

nested 5-fold cross validation approach (3).
2.1 Data mining

NetMHC-4.0 was trained on CD8+ epitope binding affinity

(BA) data from the Immune Epitope Database. This data

provides binding scores for peptides to single allele MHCs,
frontiersin.org
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with a score that is scaled between 0 and 1 that measures how

strongly the peptide binds. NetMHCpan-4.1 was trained on BA

data and additional eluted ligand (EL) data from mass

spectrometry experiments from multiple sources (4). The EL

data includes multi-allele information that was deconvoluted

into single allele datapoints using NNAlign_MA. EL score is

binary (either 0 or 1) since it checks if a peptide is present in a

MHC’s immunopeptidome. The combined BA and EL dataset

contained more than 13 million pMHC data points spread

across numerous HLAs. For all our analyses, we focused on

peptides of length 9, i.e. 9-mers, as these are the most frequent

length of antigens in human immunopeptidomes. Also, we chose

to analyze the 3 MHC molecules HLA-A02:01 (A2), HLA-

B27:05 (B27), and HLA-B08:01 (B8). We picked these HLAs

because they were highly represented in the training set (A2

ranked 1st, B27 ranked 11th, and B8 ranked 8th based on

number of training datapoints), they are HLA supertypes (they

represent the behavior of numerous less frequent HLA types),

and they have different binding motifs (discussed in section 2.2).

Our first analysis was the training data analysis. For each

HLA, we collected all its 9-mers that were reported in the

training dataset. A2 had 52569 9-mers, B27 had 17422, and B8

had 19448. The distributions of the experimentally obtained

training scores for these HLAs are shown in Figure 1. We ran
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NetMHC-4.0 and NetMHCpan-4.1 on these 9-mers to gather

each neural network’s predicted binding scores with the

corresponding HLAs. These scores are shown in Figure 1.

Furthermore, both tools classified 9-mers with large enough

predicted binding scores (using a 0.5% rank to be precise) as

strong binders for a tested HLA. We measured these thresholds

by finding the lowest predicted binding score for a strong binder

identified by these tools. Figure 1 also shows these measured

thresholds. Please note that this component of the training data

approach had been used in our previous publication (15) for

analyzing A2, so only B27 and B8 results are shown in

this Figure.

As the training scores were available for all 9-mers we tested

in the training data analysis, we also calculated confusion

matrices (i.e. we counted the number of positives and

negatives, both true and false) for both neural network tools.

We used the previously measured strong binding thresholds on

the actual training scores for each 9-mer to identify actual strong

binders and non-binders in the context of each neural network

tool. For example, in Figure 1 all 9-mers on the blue plot above

the red dashed line were classified as actual strong binders when

testing NetMHC-4.0. The results of the confusion matrices are

shown in Table S1. We also plotted the receiver operating

characteristic (ROC) curve for each neural network tool for all
FIGURE 1

The cumulative distribution of the experimental training scores (blue), NetMHC-4.0 predicted scores (red), and NetMHCpan-4.1 predicted
scores (yellow) for peptides in the training dataset for HLAs A2, B27, and B8. The strong binder thresholds for NetMHC-4.0 and NetMHCpan-4.1
are shown as dashed lines of the corresponding colors. For B27, these were 0.551 and 0.478, and for B8 these were 0.495 and 0.301
respectively. Each plot of scores was independently sorted. Consequently, the order of peptides is not conserved across the 3 plots in each
subfigure. Note that the A2 results can be accessed from our previous study (15). For A2, the NetMHC-4.0 and NetMHCpan-4.1 thresholds were
0.659 and 0.419 respectively.
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3 HLAs, as shown in Figure S1. We also computed the accuracy,

precision, recall, and F1 score from the confusion matrices (17).

While the training data analysis was useful for identifying

prediction biases, it alone was not a sufficient means for

comparing NetMHC-4.0 and NetMHCpan-4.1. As NetMHC-

4.0 was only trained on BA data while NetMHCpan-4.1 was

trained on BA and EL data, NetMHCpan-4.1 had an advantage

of having “seen” the EL peptides in its training over NetMHC-

4.0. Therefore, we performed a human proteome analysis. We

gathered the protein sequences for all reviewed human proteins

from Uniprot (18), randomly sampled 100 of them, and

fragmented them to create a set of 50804 9-mers. These

peptides were also passed through NetMHC-4.0 and

NetMHCpan-4.1 for all 3 HLAs to gather their predicted

scores. These scores are shown in Figure 2. Since no

experimentally obtained binding scores were available for these

peptides, the Pearson correlations and the confusion matrices

were not calculated. Again, this sampled human proteome

approach had also been used in our previous publication (15)

for analyzing A2 so only B27 and B8 results are shown here.
2.2 Hydrophobicity

As noted in section 2.1, one of the reasons we chose A2, B27,

and B8 as our 3 target HLAs was their different binding motifs
Frontiers in Oncology 04
(19). A2 has a strong affinity for 9-mers with hydrophobic amino

acids such as L, V, M, and I in positions 2 and 9. B27, on the

other hand, binds 9-mers with hydrophilic R at position 2. In

between these two, B8 prefers to bind 9-mers with both

hydrophobic amino acids L, V, M, and I at position 2 and 9,

but also hydrophilic amino acids R and K at position 3 and 5.

Clearly hydrophobicity plays a crucial role in distinguishing the

binding preferences of different HLAs. For our analyses, we

decided to investigate the role of hydrophobicity in NetMHC-

4.0’s and NetMHCpan-4.1’s predictions.

Hydrophobicity scales assign hydrophobicity values to single

amino acids. They are designed so the hydrophobicity of long

peptides or protein chains can be estimated by simply linearly

adding up the scores of their constituent amino acids. Scales

such as Kyte-Doolittle (20), Cornette (21), and Hopp-Woods

(22) are commonly used. However, we settled on the Moon scale

(23) for calculating hydrophobicity in our analyses as it

specifically focuses on the sidechain hydrophobicity and

polarity of single amino acids. Unlike the other scales, which

are well suited for protein folding problems that do not correlate

with sidechain hydrophobicity (24), the Moon scale is more

representative of how small peptides would behave in an

aqueous solution. The scale ranks the 20 amino acids in

decreasing order of hydrophobicity as follows: F (1.43), L

(1.26), I (1.15), P (1.13), Y (0.94), V (0.80), M (0.79), W

(0.63), A (0.46), C (0.24), E (-0.27), G (-0.30), T (-0.33), S
FIGURE 2

The cumulative distribution of NetMHC-4.0 predicted scores (red) and NetMHCpan-4.1 predicted scores (yellow) for peptides in the human
proteome dataset for HLAs A2, B27, and B8. The strong binder thresholds for NetMHC-4.0 and NetMHCpan-4.1 are shown as dashed lines of
the corresponding colors. These thresholds are the same as those in Figure 1. Each plot of scores was independently sorted. Consequently, the
order of peptides is not conserved across the 2 plots in each subfigure. Note that the A2 results can be accessed from our previous study (15).
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(-0.35), D (-0.85), Q (-0.88), N (-1.08), R (-1.19), H (-1.65),

K (-1.93).

For any given 9-mer, we calculated its total hydrophobicity

by adding up the Moon scale values for each of its 9 amino acids.

For any given set of peptides, we measured the mean and

standard deviation of the hydrophobicity scores of all peptides

in it. Furthermore, we classified any given peptide into 1 of 3

classes: Hydrophobic (total hydrophobicity greater than 3),

Hydrophilic (total hydrophobicity less than -3), or Balanced

(total hydrophobicity between -3 and 3). This classification

distinguished peptides based on their net hydrophobicity, and

allowed us to investigate the impact of hydrophobicity on the

differential prediction of MHC binding for different classes of

peptides. We added these categories in Figure S1 and Tables S1

and Table 1 to highlight any prominent trends specific to a

peptide category.

It was possible the smaller BA training dataset for NetMHC-

4.0 was biased or unrepresentative of the numerous possible

binding peptides. This bias could also be caused due to the

binding affinity assays used to obtain BA scores, since these

experiments only measure MHC-peptide affinity and do not

account for the rest of the antigen presentation pathway or

physiological conditions. Therefore, we also compared the

hydrophobicities of the set of BA training data points (i.e.

peptides NetMHC-4.0 was trained on) to the set of EL training

data points (i.e. more than 80% of the peptides NetMHCpan-4.1

was trained on) for all 3 HLAs.
Frontiers in Oncology 05
3 Results

From the scores shown in Figure 1, it was clear that the

pMHC binding data fit a mostly binary data classification

problem, since only 15% of the analyzed peptides had a

training score not equal to 0 or to 1. This was mostly due to

the addition of EL data which provided a binary “yes” or “no”

answer to whether a given peptide was found attached to our

chosen HLAs through mass spectroscopy. NetMHC-4.0’s

predicted scores were dispersed smoothly between 0 and 1. In

contrast, NetMHCpan-4.1 had more lopsided predictions with

more non-binders assigned a binding score of 0. However,

neither neural network tool predicted a definitive score of 1 to

strong binders and instead used their thresholds to identify

binders. NetMHCpan-4.1 predicted more strong binders than

NetMHC-4.0 in all 3 cases. A2 results can be accessed from our

previous publication (15).

These results of NetMHC-4.0 and NetMHCpan-4.1 on the

sample human proteome are shown in Figure 2. Note that no

experimental binding data was available for these peptides, and

that the same set of these peptides was used for each HLA’s

predictions when comparing Figure 2 with 1. Again,

NetMHCpan-4.1 seemed more stringent in predicting non-

zero binding scores. NetMHCpan-4.1 also predicted slightly

more strong binders than NetMHC-4.0 for all 3 HLAs.

The performances of NetMHC-4.0 and NetMHCpan-4.1 as

binary classifiers are shown in Figure S1 as ROC curves. The
TABLE 1 Various binary classification metrics on the training data analysis for NetMHC-4.0 (N-4.0) and NetMHCpan-4.1 (NP-4.1).

HLA Peptide Case Accuracy Precision Recall F1 score

N-
4.0

NP-
4.1

N-
4.0

NP-
4.1

N-
4.0

NP-
4.1

N-
4.0

NP-
4.1

A2 All 0.918 0.936 0.882 0.918 0.618 0.756 0.727 0.829

Hydrophobic
only

0.875 0.871 0.861 0.922 0.745 0.735 0.745 0.818

Hydrophilic only 0.986 0.991 0.786 0.826 0.134 0.613 0.229 0.704

Balanced only 0.924 0.952 0.909 0.915 0.514 0.776 0.657 0.840

B27 All 0.909 0.965 0.914 0.917 0.460 0.865 0.612 0.890

Hydrophobic
only

0.926 0.969 0.954 0.964 0.535 0.832 0.685 0.893

Hydrophilic only 0.916 0.957 0.793 0.832 0.362 0.814 0.497 0.823

Balanced only 0.903 0.966 0.918 0.919 0.454 0.878 0.608 0.898

B8 All 0.927 0.951 0.925 0.915 0.625 0.818 0.746 0.864

Hydrophobic
only

0.915 0.935 0.910 0.930 0.571 0.728 0.702 0.816

Hydrophilic only 0.960 0.965 0.921 0.892 0.728 0.832 0.813 0.861

Balanced only 0.924 0.953 0.930 0.914 0.627 0.840 0.749 0.876
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figure also includes the area under the curve (AUC) for each

classifier. It breaks down the performance across all training

peptides and even the 3 peptide categories defined in 2.2. For A2

and B27, NetMHC-4.0 and NetMHCpan-4.1 had similar AUC

values (no more than 1% apart), while for B8 NetMHC-4.0

under-performed by 3%. Across all HLAs, both tools reported

AUC values higher than 95%. The different peptide categories

did not highlight any notable trends on the ROC plots. It is

interesting to note that both tools had different performances

across the 3 peptide cases in each HLA. To investigate this

observation in detail, we used violin plots to visualize the

predicted immunopeptidomes.

The distributions of the hydrophobicity scores of 9-mers in the

training data analysis are shown in Figure 3, and those in the

human proteome data analysis in Figure 4. For both analyses, we

used the 2 sample t-test to compare the immunopeptidomes

predicted by NetMHC-4.0 and NetMHCpan-4.1, and to identify

any discrepancies in their predictions on the basis of

hydrophobicity (all values used in the t-tests are listed in Table S2).

Strong binders to A2 were expected to have two hydrophobic

amino acids (L, V, M, or I) at positions 2 and 9, and thus the

expected A2 immunopeptidome would be more hydrophobic
Frontiers in Oncology 06
than the training or sampled data (expected to be approximately

centered about a Moon score of 2). In both analyses,

NetMHCpan-4.1 predicted strong binders with a closer

hydrophobicity score to our expected value than NetMHC-4.0

did. This difference in predictions was extremely statistically

significant in both analyses (p-values less than 0.0001). That is,

NetMHC-4.0’s predicted strong binders for A2 were more

hydrophobic than NetMHCpan-4.1’s.

Strong binders to B27 were expected to have one hydrophilic

amino acid (R) at position 2, and thus the expected B27

immunopeptidome would be slightly more hydrophilic than

the training or sampled data (expected to be approximately

centered about a Moon score of -1). Neither tool exhibited this

hydrophilic shift in its predictions on the training dataset, but

with the human proteome, NetMHCpan-4.1 did predict strong

binders centered at a hydrophobicity score of -0.775; NetMHC-

4.0’s mean was -0.155. The difference in predictions was

statistically significant in both analyses (p-values no larger

than 0.002). Again, NetMHC-4.0’s predicted strong binders for

B27 were more hydrophobic than NetMHCpan-4.1’s.

Strong binders to B8 were expected to have two hydrophobic

amino acids (L, V, M, or I) at positions 2 and 9, and two
FIGURE 3

Violin plots of the hydrophobicity of the sets of strong binders predicted by NetMHC-4.0 and NetMHCpan-4.1 on the training dataset for A2,
B27, and B8. The x-axis represents the hydrophobicity of a 9-mer, and the y-axis represents the frequency. Note that the A2 results can be
accessed from our previous study (15). The mean and two quartiles are also depicted in each distribution.
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https://doi.org/10.3389/fonc.2022.1034810
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Solanki et al. 10.3389/fonc.2022.1034810
hydrophilic amino acids (R or K) at positions 3 and 5.

Consequently, no major shift in hydrophobicity expected in

the B8 immunopeptidomes predicted by either neural network

tool. This was indeed the result observed in both analyses, and

no significant difference was observed between the predictions of

NetMHC-4.0 and NetMHCpan-4.1 (p-values were 0.716 and

0.425 for the training dataset analysis and the human proteome

analysis respectively). In this case, NetMHC-4.0’s predicted set

of binders for B8 were not distinguishable from NetMHCpan-

4.1’s in terms of hydrophobicity.

Overall, the trend observed from these violin plots seemed to

be that NetMHC-4.0 was incorrectly accounting for

hydrophobicity when predicting strong binders for A2 and

B27. In contrast, NetMHCpan-4.1 was predicting less

hydrophobic strong binders for allHLAs in the human

proteome analysis. As NetMHCpan-4.1 more closely matched

our expectations for A2 and B27, we reasoned that its

predictions were more accurate. Since NetMHCpan-4.1 also

predicted more strong binders, we hypothesized that the new

strong binders gained in NetMHCpan-4.1’s immunopeptidome

were slightly hydrophilic (with respect to NetMHC-4.0’s
Frontiers in Oncology 07
immunopeptidome) and therefore skewing the mean

hydrophobicity lower. To investigate this, we referred to

Table 1 in which we tracked each neural network tool’s

performance on the training data. In particular, we broke

down the performances of these tools in our 3 specific peptide

cases using 4 different classification metrics discussed below.

The Accuracy metric tracks the number of true negatives

and true positives identified by a classifier relative to all the

tested data points. Across all HLAs, both neural network tools

maintained high accuracy, though NetMHCpan-4.1 performed

slightly better (by roughly 2%). For B27 in particular,

NetMHCpan-4.1 had a notably higher accuracy (by about 6%)

in all peptides cases. No specific improvement was observed in

any individual peptide category.

The Precision metric inversely measures the number of false

positives identified by a classifier. NetMHCpan-4.1 exhibited

higher precision for A2 (by 3%), roughly equivalent precision for

B27, and slightly lower precision for B8 (by about 2%) in all

peptide cases. The highlight here was that NetMHC-4.0 had low

precision (lower than 80%) when dealing with hydrophilic

peptides for A2 and B27.
FIGURE 4

Violin plots of the hydrophobicity of the sets of strong binders predicted by NetMHC-4.0 and NetMHCpan-4.1 on the human proteome dataset
for A2, B27, and B8. The x-axis represents the hydrophobicity of a 9-mer, and the y-axis represents the frequency. The distributions of all
sampled peptides (blue), strong binders predicted by NetMHC-4.0 (red), and those predicted by NetMHCpan-4.1 (yellow) are shown. The mean
and two quartiles are also depicted in each distribution. Note that the A2 results can be accessed from our previous study (15).
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The Recall metric inversely represents the number of false

negatives not identified by a classifier. NetMHCpan-4.1 showed

significant improvement (consistently higher than 10%) in recall

for all HLAs. For A2, these improvements were observed in

classifying hydrophilic and balanced peptides. For B27 and B8,

these improvements were observed in all peptide categories.

The F1 score is a combination of precision and recall, and

tracks overall performance of a classifier. For all HLAs,

NetMHCpan-4.1 outperformed NetMHC-4.0 (by at least 10%)

when considering all peptides categories.

The observations from these data, in particular the accuracy

and F1 score, support our initial assumption that NetMHCpan-

4.1 had stronger predictions than NetMHC-4.0 when focusing

on hydrophobicity. The precision and recall scores elucidate the

reasons behind this improvement: NetMHCpan-4.1 predicted

fewer false positives, and much fewer false negatives for all

HLAs. The sources of these false positives and negatives in

NetMHC-4.0’s predictions varied across the different HLAs. For

A2, most false positives were found in non-balanced

(hydrophobic and hydrophilic) peptides cases, while the

majority of false negatives came from non-hydrophobic

peptides. For B27, a few false positives were observed in the

hydrophilic peptides, but most notably numerous false negatives

were found across all types of peptides. For B8, false negatives in

all peptides cases lowered the performance of NetMHC-4.0.

It is also important to acknowledge that NetMHCpan-4.1

has an unfair advantage over NetMHC-4.0 – the newer tool was

trained on a much larger dataset. Furthermore, NetMHC-4.0

was trained on only peptide-MHC binding affinity data, while

NetMHCpan-4.1 was trained on eluted ligand data that was

representative of the entire antigen presentation pathways. We

investigated the possibility of the small BA data in the training

dataset being biased towards being hydrophobic. These values

were contrasted to the mean hydrophobicity values of the EL

dataset in Figure S2. In each case, the BA training data was more

hydrophobic than the EL training data set. This bias was the

most prominent in the A2 peptides, and least prominent in B27.

This discrepancy in training data could be one of the causes for

why NetMHC-4.0’s predicted strong binders contained many

hydrophilic false negatives.
4 Conclusion

In our previous study, we had identified a significant

preference for hydrophobic peptides in NetMHC-4.0’s

predicted immunopeptidome for A2 (15). We had argued that

highly hydrophobic peptides were being classified by NetMHC-

4.0 as false positives. We had suggested that highly hydrophobic

peptides would never be trafficked in the aqueous cytosol of cells

and were therefore obvious false positives.

In this study, we expanded our previous research to focus on

more HLA types – i.e. A2, B27, and B8. These HLAs prefer to
Frontiers in Oncology 08
bind hydrophobic, hydrophilic, and balanced (neither

hydrophobic nor hydrophilic) peptides respectively. By

comparing the predictions by NetMHC-4.0 and NetMHCpan-

4.1 on both the training dataset (see Figure 3) and the sampled

human proteome (see Figure 4), we confirmed NetMHC-4.0’s

hydrophobicity bias for A2 and B27. In these cases, NetMHC-

4.0’s predicted immunopeptidome was much more hydrophobic

than NetMHCpan-4.1’s predictions. This hydrophobic bias was

not statistically significant in the B8 immunopeptidome. These

results suggest that NetMHC-4.0 struggles to predict strong

binders correctly in HLAs with strong hydrophobic or

hydrophilic binding motifs.

We used several machine learning metrics, such as accuracy,

and recall, on the training dataset analysis (see Table 1). From

these results, we discovered the improvement in NetMHC-4.0’s

predictions (over NetMHC-4.0’s) stemmed from fewer false

negatives in the non-balanced peptide cases, and fewer false

positives in general. In particular, the biased immunopeptidome

predicted by NetMHC-4.0 was not just a consequence of

overestimating the binding of hydrophobic peptides, but also

due to overlooking binders that were hydrophilic.

A key takeway of our analyses is that this hydrophobicity

bias could only be discovered and expounded upon by focusing

on hydrophobicity of peptides as a core factor in pMHC binding.

Merely using machine learning metrics without accounting for

such biochemical attributes would have been insufficient in

capturing this bias. This is evident from how both neural

network tools had similar performances across all 3 HLAs in

Figure S1. Just as understanding the erroneous predictions from

NetMHC-4.0 required the use of hydrophobicity as a metric, we

believe that mechanistically modelling the biochemistry (to

some extent) improves upon a purely data-driven artificial

intelligence’s prediction.

We conclude that NetMHCpan-4.1 is the more reliable of

the two neural network tools. It had stronger results across the

various metrics we used, and the hydrophobicity of its predicted

immunopeptidome matched our expected hydrophobicity

values. In contrast, NetMHC-4.0 struggled to predict all strong

binders for HLAs that had notable hydrophobic or hydrophilic

preferences. There could be several reasons why NetMHCpan-

4.1 outperformed NetMHC-4.0. NetMHCpan-4.1 had a larger

training set. Binding Affinity data alone could not model the

effects of the entire antigen presentation pathway as Eluted

Ligand data could have. For example, the binary values of

eluted ligand data might have trained NetMHCpan-4.1 to be

more decisive in its predictions. Tracking the MHC sequence

could have allowed NetMHCpan-4.1 to model binding

mechanics of MHC binding pockets. Eluted ligand data might

have set NetMHCpan to capture aspects of the entire antigen

presentation pathway instead of estimating pMHC binding

strength alone. The generation of negative training data (16)

for NetMHCpan-4.1 could have resolved false positives that

NetMHC-4.0 was vulnerable to.
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In future work, we will focus on identifying more significant

structural and mechanistic attributes that pose hurdles for AI-

based methods. We are developing a structural prediction tool

capable of predicting peptide binding with uncurated MHC

molecules. Since we were limited to using the training dataset,

and the sample human proteome dataset without binding data, it

would be interesting to expand upon this study with a large

evaluation dataset to test the predictions of NetMHCpan-4.1 and

NetMHC-4.0 as well.
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SUPPLEMENTARY FIGURE 1

Receiver Operating Characteristic curves for NetMHC-4.0 (left) and

NetMHCpan-4.1 (right) for A2, B27, and B8 based on the training dataset.
In each subfigure, plots are drawn for all peptides (blue), hydrophobic

peptides only (red), hydrophilic peptides only (yellow), and balanced

peptides only (green). A completely random classifier is also plotted for
reference (dashed black). For each plot, the Area Under the Curve (AUC) is

also noted in the legend.

SUPPLEMENTARY FIGURE 2

Violin plots of the hydrophobicity of all the training 9-mers, split based on

experimental source: Binding Affinity (in blue) and Eluted Ligand (in red). For

A2, there were 7940 BA peptides and 44719 EL peptides, with mean
hydrophobicities of 2.227 and 0.667 respectively. For B27, there were 2683

BA peptides and 14739 EL peptides, withmean hydrophobicities of 0.597 and
0.322 respectively. For B8, there were 2777 BA peptides and 16671 EL

peptides, with mean hydrophobicities of 0.999 and 0.292 respectively.
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