
Power and Area Efficient Sorting Networks using Unary Processing

M. Hassan Najafi, David J. Lilja, Marc Riedel and Kia Bazargan
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA

{najaf011, lilja, mriedel, kia}@umn.edu

Abstract—Sorting is a common task in a wide range of
applications from signal and image processing to switching
systems. For applications that require high performance, sorting
is often performed in hardware. Hardware cost and power
consumption are the dominant concerns. The usual approach
is to wire up a network of compare-and-swap units in a
configuration called a Batcher (or Bitonic) network. This paper
proposes a novel area- and power-efficient approach to sorting
networks based on “unary processing.” Data is encoded as serial
bit-streams, with values represented by the fraction of 1’s in
a stream of 0’s and 1’s. (This is an evolution of prior work
on stochastic logic. Unlike stochastic logic, the unary approach
is deterministic and completely accurate.) Synthesis results of
complete sorting networks show up to 87% area and power
saving compared to the conventional binary implementations.
However, the latency increases. To mitigate the increased
latency, the paper uses a novel time-encoding of data. The
approach is validated with implementation of an important
application of sorting: median filtering. The result is a low-
cost, energy-efficient implementation of median filtering with
only a slight accuracy loss.

Keywords-Sorting networks; unary processing; time-encoding
data; stochastic computing; median filtering; low-cost design.

I. INTRODUCTION

Sorting is an important task in applications ranging from
data mining and databases to image and signal processing.
For applications that require high performance, sorting is
often performed in hardware. The total chip area is limited
in many applications. As fabrication technologies continue
to scale, keeping chip temperatures low is an important goal
since leakage current increases exponentially with tempera-
ture. Power consumption must be kept as low as possible.
Developing low-cost, power-efficient hardware-based solu-
tions to sorting is an important goal. The usual approach for
hardware implementation of sorting is to wire up a network
of compare-and-swap (CAS) units in a configuration called
a Batcher (or Bitonic) network. The hardware cost and the
power consumption depend on the number of CAS blocks
and the cost of each CAS block. ∗

This paper proposes a novel area- and power efficient
approach to sorting networks based on “unary processing.”
Data is encoded as serial bit-streams, with values repre-
sented by the fraction of 1’s in a stream of 0’s and 1’s.
This is an evolution of prior work on stochastic process-
ing [15][7][16]. Our designs inherit the fault tolerance and
low-cost design advantages of stochastic processing while

∗This work was supported in part by National Science Foundation grant
no. CCF-1408123. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

Figure 1: The CAS network for an 8-input bitonic sorting [6].

producing completely accurate results. As with stochastic
processing, however, the approach is handicapped in terms
latency. A serial representation is exponentially longer than a
binary positional representation. To mitigate the long latency
issue of unary processing, this paper adopts a time-encoding
approach recently proposed in [11]. The proposed approach
is validated with implementation of an important application
of sorting networks: median filtering. Synthesis results show
up to 87% area and power savings compared to conventional
weighted binary implementations. Time-encoding the data
provides a significant improvement in the latency and energy
consumption with only a slight loss in accuracy.

II. BACKGROUND
A. Sorting Networks

A sorting network is a combination of CAS blocks that
sorts a set of input data. Each CAS block compares two input
values and swaps the values at the output, if required. The
bitonic sorting network proposed by Batcher [4] is a popular
configuration for a sorting network that has the lowest known
latency for hardware-based sorting. Bitonic Sort uses a key
procedure called Bitonic Merge (BM). Given two equal
size sets of input data, sorted in opposing directions, the
BM procedure will create a combined set of sorted data.
It recursively merges an ascending and a descending set of
size N/2 to make a sorted set of size N [8]. Figure 1 shows
the CAS network for an 8-input bitonic sorting network
consisting of 24 CAS blocks. 16-input, 32-input, and 256-
input bitonic sorting networks can be similarly constructed
using 80, 240, and 4,608 CAS blocks, respectively.

B. Unary processing

Weighted binary radix has been the dominant format for
representing numbers in the field of computer engineering
since its inception. The representation is compact; however,
computing on this representation is relatively complex, since
each bit must be weighted according to its position. Also,
the representation is very susceptible to noise: a flipped bit
can introduce a large error (if it is a significant bit in the

representation). Poppelbaum [15] and Gaines [7] introduced
stochastic processing based on uniformly distributed random
bit-streams. All digits have the same weight in this comput-
ing paradigm. Numbers are limited to the [0, 1] interval and
encoded by the probability of obtaining a one versus a zero
in the stream. To represent a real number with a resolution
of 2−M , a stream of 2M bits is required. Beginning in 2008,
Qian et al. reintroduced the concept of stochastic processing
to the computer engineering community [16] [19]. Clearly, a
stochastic representation is much less compact than weighted
binary; this translates to high latency. However, complex
functions can be computed with remarkably simple logic, e.g.
multiplication can be performed using a single AND gate.
Also, the representation can tolerate high clock skew [10],
timing errors [1], and soft logic errors (i.e., bit flips) [19][3].

A recently evolution of the idea of stochastic comput-
ing (SC) has been to perform the processing determinis-
tically [9][11][12]. If properly structured, computation on
deterministic bit-streams can be performed with the same
circuits as are used in SC. The results are completely accurate
with no random variations; furthermore, the latency is greatly
reduced. The idea of unary processing was first introduced in
the 1980s [14] as a hybrid information processing technique
that has characteristics common to both conventional binary
and to SC. It is deterministic, but borrows the concept of
averaging from stochastic methods. In this paper we apply
unary processing to problem of desiging low-cost, power-
efficient sorting networks.

Unary streams. In unary processing, numbers are encoded
uniformly by a sequence of one value (say, 1) followed
by a sequence of the other value (say, 0) (See Figure 2).
This uniform sequence of bits is called a unary stream. As
with stochastic streams, all the bits have equal weight. This
property provides the immunity to noise. Multiple bit flips in
a long unary stream produce small and uniform deviations
from the nominal value.

Unary Operations. The maximum (Max) and minimum
(Min) value functions are two useful functions with simple
and low cost unary implementation: an AND (OR) gate gives
the Min (Max) of two unary streams when two equal-length
unary streams are connected to its inputs. These gates showed
a similar functionality when fed with correlated stochastic
bit-streams [2]. Figure 3 shows an example of finding the
Max and Min values in unary processing. Recent work has
shown absolute-value subtraction (using an XOR gate) [2],
comparison (using a D-type flip-flop) [12], and multiplication
(using an AND gate) [9], [11] of unary streams.

Time-based unary streams. The representation of num-
bers in unary processing is not limited to purely digital
bit-streams. A time-based interpretation of numbers is also
possible using pulse modulation of data [11]. Figure 2 shows
both approaches. While both approaches can operate on the
same unary logic, the time-based representation offers a
seamless solution to the increasing number of time-based
sensors and, as we will show, can be exploited in addressing
the long latency problem of unary circuits.

Figure 2: Time-based vs. digital-stream unary representation.

1111111000

1111000000

AND

OR

1111111000
1111000000

1100000000
1111111000

(0.4)

(0.7)
(0.4)

(0.2)

(0.7)
(0.7)

Figure 3: Example of performing maximum and minimum
operations on unary streams.

III. COMPLETE SORT SYSTEM

In this section we first discuss the conventional binary
and the unary design of complete sorting networks and then
compare the designs by presenting synthesis results.

A. Conventional Design vs Unary Design

Sorting networks are made of CAS blocks. The hardware
cost of a sorting network is therefore a direct function of the
number of CAS blocks and the cost of each block. As shown
in Figure 4a, in a weighted binary design with a data-width
of M bits, each CAS block consists of one M -bit comparator
and two M -bit multiplexers. In the unary domain, however,
one AND and one OR gate is sufficient to synthesize a CAS
block. The sorting networks can therefore be synthesized
regardless of the resolution of the input data. While the
synthesized circuit will be much less costly than the circuit
synthesized in the binary approach, additional overhead must
be incurred for conversion units which are required to convert
the data between the binary and the unary formats, and a
longer time is required to perform the operation on 2M -bit
long streams.

Assuming that the input data is given in binary format and
the result must again be in binary, a unary stream generator
is required to convert the data from binary to unary and
a counter is required to count the number of ones in the
final unary stream to convert the result back into binary.
Figure 5 shows the design of a unary stream generator. Note
that while the converters are data-width dependent, the CAS
blocks synthesized with the unary approach are independent
of data resolution.

(a)

A
Min (A,B)

Max (A,B)

AND

OR

B

(b)

Figure 4: Hardware implementation of a CAS block a)
Conventional binary design b) Unary design.

Table I: Synthesis results for complete bitonic sort networks
of inputs
and outputs

of CAS
units

Area (µm2) Critical Path (ns) Power (@max f) — (@50MHz) (mW)
Conven. Unary Conven. Unary Conven. Unary Conven. Unary

8 24 3,086 2,194 1.85 0.74 1.30 3.26 0.12 0.13
16 80 10,534 4,511 2.73 0.87 3.66 5.30 0.49 0.25
32 240 32,508 9,235 4.06 1.07 8.86 8.40 1.75 0.49
64 672 90,691 19,028 5.71 1.33 19.8 13.4 5.48 0.96

128 1,792 242,049 33,916 7.49 1.62 44.4 21.4 15.7 1.80
256 4,608 586,456 74,719 9.71 1.91 88.75 36.5 42.2 3.64

M-bit
Comparator

M-bit
Counter

M-bit
Input Register

Unary Stream

Figure 5: Unary stream generator.

B. Design Evaluation

We developed Verilog hardware descriptions of complete
bitonic sorting networks for 8, 16, 32, 64, 128, and 256 data
inputs, for both the conventional binary and for the proposed
unary approach. For the unary approach, the architectures
include the required conversion units from/to binary. The
designs are synthesized using the Synopsys Design Compiler
vH2013.12 and a 45nm standard-cell library. We report
synthesis results for a data-width of 8 bits. In order to find
the minimum hardware cost, we implement a non-pipelined
version of each architecture.

Table I shows the synthesis results. For small networks like
the 8-input sort networks, the cost overhead of converters
was comparable to the saving due to using a low-cost
CAS implementation and so lower savings are achieved. By
increasing the number of inputs, and so the number of CAS
blocks, the savings dominate the overheads and a hardware
area saving of around 87% is achieved when implementing
the 256-input sorting network with the unary approach.

The total power consumption at the maximum feasible
working frequency of each architecture, and also at 50 Mhz,
are presented in Table I. Although the unary designs would
have a much lower power consumption at low speeds, due to
a lower critical path latency and so higher maximum working
frequency, the power numbers reported for the unary imple-
mentations of the 8 and 16 input sorting networks are greater
than the power numbers reported for their corresponding
binary implementations. For larger sorting networks (32-
input and above), the simplicity of the unary design has led
to even a lower power consumption at the maximum working
frequency than that of the binary implementation.

Due to a simpler architecture, the critical path (CP) latency
of the designs synthesized with the unary approach is lower
than that of the conventional binary designs. However, the
total latency of the unary approach, which is the product of
the CP latency and the number of clock cycles that the system
processes the unary stream, is much more than the latency
of the conventional design. Although the longer latency of
the unary approach is still acceptable for many applications,
a more important issue is the energy consumption. Energy
consumption is evaluated by the product of the processing
time and the total power consumption. A very long pro-

Figure 6: The CAS network for a 3x3 Median Filter [13].

cessing time of unary design would lead to a higher energy
consumption than their binary counterparts. We will address
the long latency and high energy consumption problem of
unary designs in the next section.

IV. HIGHLY EFFICIENT MEDIAN FILTERS

A median filter is a popular non-linear filter widely used
in image and signal processing applications. It replaces
each input data with the median of all the data in a local
neighborhood. The high computational complexity of median
filters makes their hardware implementation expensive and
inefficient for many applications. In this section we first
propose a low-cost implementation of median filters similar
to the unary sorting networks introduced in Section III. We
then exploit a time-based representation of input data to
address the long latency problem of the unary circuits.

A. Circuit Design

Sorting network-based architectures [5] consisting of a
network of CAS blocks are one of the most common
approaches for hardware implementation of median filters.
Figures 6 shows the sorting network for a 3x3 median filter.
We developed a non-pipelined structure of this median filter
with both the conventional binary and the proposed unary
design approach with 8-bit input data resolution. The CAS
blocks of Figure 4 were used in these architectures.

Table II shows the synthesis results for these architectures.
The overhead in the bit-stream based unary design includes
the required converters from/to binary. As can be seen, the
unary implementation significantly improves the hardware
cost. For applications in which hardware cost and power
consumption are the main priorities, the proposed unary
design outperforms the conventional binary design. However,
for high-performance, low-energy applications the binary
design can be a better choice. In the following section we
exploit the concept of time-based representation of data to
improve the latency and energy consumption of the unary-
based median filtering at the cost of a slight accuracy loss.

Table II: Synthesis results of the sorting network-based median filters for data-width=8.
Median
Filter Design Approach Area (µm2) Latency (ns) Power (mW)

(@max freq) Energy (pJ)CAS Logic Overheads Total CP Total

3x3
Conventional Binary 2,167 - 2,167 2.10 2.10 1.03 2.1

Unary-Bit-Stream-based 79 917 996 0.70 179.2 0.95 170.2
Unary-Time-based 79 776 855 0.39 0.39 1.78 0.69

B. Time-based unary design
1) Overview: Image sensors convert the light intensity to

an analog voltage or current. With more and more sensors
providing time-encoded outputs and ways to convert voltage
or current to time signals [17], the sensed data in the form
of time-encoded signals can directly be fed to unary circuits.
Based on the idea of time-encoding data introduced in [11],
we time-encode the input data to address the long latency of
processing using unary circuits. An analog-to-time converter
(ATC) (e.g., a PWM signal generator) is used to convert the
sensed data to a time-encoded pulse signal. The converted
signal is processed using the unary circuit and the output is
converted back to a desired analog format using a time-to-
analog converter (TAC) (e.g., a voltage integrator).

2) Evaluation: Table II shows the area, latency, power,
and energy consumption of the implemented median filtering
circuits synthesized with the conventional binary, digital bit-
stream based unary, and the proposed time-based unary ap-
proach. The low-cost pulse-width modulator proposed in [11]
was used as the ATC and a Gm-C active integrator [18]
was used as the TAC in the time-based unary design. While
a pulse-width modulator generates a periodic signal with a
specific duty cycle and frequency, only one period of the
generated signal is needed for processing the data. The duty
cycle is determined by the DC level of the sensed data. We
extracted the area and energy numbers from [11] and report
them as the overhead of the time-based unary design. A
separate ATC is used for time-encoding each input data. The
reported overhead numbers are for a working frequency equal
to the inverse of the CP latency of the circuit. Assuming that
the clock signal that drives the ATC is available in the system,
a lower working frequency translates to a lower area and
energy overhead. As can be seen in Table II, the total area,
latency, and energy consumption of the time-based unary
design are better than those of the bit-stream based unary
and also those of the binary design.

The down-side of the time-based unary design, however, is
a slight accuracy loss. The working frequency of the ATC af-
fects the effective number of bits in representing data, hence
the accuracy of computation. To evaluate the performance
of the time-based design, we developed a SPICE netlist of
the circuit and simulated its operation on a 128× 128 noisy
soldier image [12]. Simulations were carried out using a 45-
nm standard cell library in HSPICE. Table III shows the
mean absolute error rates (MAE) for the images produced
using the time-based unary design. Image pixel intensities
were converted to pulse signals using the ATC of [11] and
also using the HSPICE built-in pulse generator (an ideal
ATC). As can be seen in Table III, a lower working frequency
leads to a higher accuracy in the time-based approach. A
MAE of less than 1 percent is achieved with 1ns processing

Table III: MAE of the time-based unary circuit.
Median Filter

Time-based Unary
Length of input signals (1/freq.)
CP 1ns 2ns 5ns

3x3 Ideal ATC 2.09% 0.84% 0.45% 0.19%
ATC of [11] 2.65% 1.05% 0.56% 0.21%

time. The inherent inaccuracy in converting the values with
the ATC of [11] resulted in a slightly higher error rate when
compared to the error rate where using the ideal ATC.

V. CONCLUSION
This work proposed an area and power efficient imple-

mentation of sorting networks based on unary processing.
The core processing logic consists of simple gates. The only
overhead in the approach, the cost of converting data from/to
binary, is small. More than 80% area and power savings are
observed when compared to a conventional binary imple-
mentation. The penalty is latency. Processing digital unary
streams requires a relatively long running time (e.g., more
than 100ns). To mitigate the latency, we further developed
a time-based unary design approach in which the input data
is encoded in time and represented with pulse signals. The
result is a significant improvement in the latency and energy
consumption, at the cost of a slight loss in accuracy.

REFERENCES
[1] A. Alaghi, W.-T. J. Chan, J. P. Hayes, A. B. Kahng, and J. Li. Trading

accuracy for energy in stochastic circuit design. ACM JETC, 2017.
[2] A. Alaghi and J. Hayes. Exploiting correlation in stochastic circuit

design. In Proc. ICCD, pages 39–46, Oct. 2013.
[3] B. Li et al. Using stochastic computing to reduce the hardware

requirements for a restricted boltzmann machine classifier. In Proc.
FPGA, pages 36–41, New York, NY, USA, 2016.

[4] K. E. Batcher. Sorting networks and their applications. In AFIPS ’68,
pages 307–314, New York, NY, USA, 1968. ACM.

[5] C. Chakrabarti. Sorting network based architectures for median filters.
IEEE Trans. on Circuits Syst. II: Analog Digit. Signal Process., 1993.

[6] A. Farmahini-Farahani et al. Modular design of high-throughput, low-
latency sorting units. IEEE Transactions on Computers, July 2013.

[7] B. Gaines. Stochastic computing systems. In Advances in Information
Systems Science. Springer US, 1969.

[8] B. Gedik, R. R. Bordawekar, and P. S. Yu. Cellsort: High performance
sorting on the cell processor. In VLDB’07, 2007.

[9] D. Jenson and M. Riedel. A Deterministic Approach to Stochastic
Computation. In Proc. ICCAD, New York, NY, USA, 2016.

[10] M. H. Najafi et al. Polysynchronous Clocking: Exploiting the Skew
Tolerance of Stochastic Circuits. IEEE Trans. on Computers, 2017.

[11] M. H. Najafi et al. Time-Encoded Values for Highly Efficient Stochastic
Circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2017.

[12] M. H. Najafi and D. J. Lilja. High-Speed Stochastic Circuits Using
Synchronous Analog Pulses. In Proc. ASP-DAC, pages 481–487, 2017.

[13] P. Li et al. Computation on Stochastic Bit Streams Digital Image
Processing Case Studies. IEEE TVLSI, pages 449–462, 2014.

[14] W. Poppelbaum, A. Dollas, J. Glickman, and C. O’Toole. Unary
processing. In Advances in Computers. Elsevier, 1987.

[15] W. J. Poppelbaum, C. Afuso, and J. W. Esch. Stochastic computing
elements and systems. In AFIPS ’67, New York, NY, USA, 1967. ACM.

[16] W. Qian and M. Riedel. The synthesis of robust polynomial arithmetic
with stochastic logic. In Proc. DAC, pages 648–653, 2008.

[17] V. Ravinuthula, V. Garg, J. G. Harris, and J. A. B. Fortes. Time-mode
circuits for analog computation. IJCTA, 37(5):631–659, 2009.

[18] W. Sansen. Analog design essentials, ser. the international series in
engineering and computer science, 2006.

[19] W. Qian et al. An Architecture for Fault-Tolerant Computation with
Stochastic Logic. IEEE Transactions on Computers, 2011.

