
Digital Signal Processing with Biomolecular
Reactions

Hua Jiang, Aleksandra P. Kharam, Marc D. Riedel and Keshab K. Parhi

Department of Electrical and Computer Engineering
University of Minnesota

200 Union St. S.E., Minneapolis, MN 55455
{hua, veden002, mriedel, parhi}@umn.edu

Abstract—We present a methodology for implementing dig-
ital signal processing (DSP) operations such as filtering with
biomolecular reactions. From a DSP specification, we demon-
strate how to synthesize biomolecular reactions that produce
time-varying output quantities of molecules as a function of
time-varying input quantities. Unlike all previous schemes for
biomolecular computation, ours produces designs that are de-
pendent only on coarse rate categories for the reactions (“fast”
and “slow”). Given such categories, the computation is exact
and independent of the specific reaction rates. We implement
DSP operations through a self-timed “handshaking” protocol
that transfers quantities between molecular types based on the
absence of other types. We illustrate our methodology with the
design of a simple moving-average filter as well as a more complex
biquad filter. We validate our designs through transient stochastic
simulations of the chemical kinetics. Although conceptual for the
time being, the proposed methodology has potential applications
in domains of synthetic biology such as biochemical sensing and
drug delivery. We are exploring DNA-based computation via
strand displacement as a possible experimental chassis.

I. INTRODUCTION

In the nascent field of synthetic biology, researchers are
striving to create biological systems with functionality not seen
in nature. Recent accomplishments portend of a coming revo-
lution. From Salmonella that secretes spider silk proteins [1],
to yeast that degrades biomass into ethanol [2], to E. coli that
produces antimalarial drugs [3], the potential impacts are far-
reaching.

The field has been driven by experimental expertise; much
of its success has been attributable to the skill of the re-
searchers in specific domains of biology. The electronic cir-
cuit design community has expertise to contribute to this
endeavor [4], [5], [6], [7], [8]. In particular, digital signal
processing (DSP) is a sophisticated, mature domain [9], [10].
In this paper, we apply and extend expertise from DSP to the
domain of synthetic biology.

One of the great successes of integrated circuit design
has been in abstracting and scaling the design problem. The
physical behavior of transistors is understood in terms of
differential equations – say, with models found in tools such
as SPICE [11]. However, the design of circuits occurs at more
abstract levels – in terms of switches, gates, and modules.

This work is supported by an NSF EAGER Grant, #CCF0946601.

Many analogous levels of abstraction exist for biological
systems. These range from molecular dynamics, to protein net-
works, to genetic regulatory networks, to signaling pathways,
to complete cellular systems, to multicellular organisms.

A. Computational Model

Here we will discuss a particular level of abstraction,
analogous in some ways to transistor netlists: biomolecular
reactions. A biomolecular reaction is a rule that specifies how
types of molecules combine to produce other types. Consider
the reaction

a + b
fast−→ 2c.

When this reaction fires, one molecule of a is consumed, one
of b is consumed, and two of c are produced. (Accordingly, a
and b are called the reactants and c the product.)

We will examine the abstraction from a design perspective:
how can we synthesize biomolecular reactions that produce
specific output quantities of molecules as a function of input
quantities? The challenge in setting up such computation is
that the reactions execute asynchronously at different rates.
The rate at which each reaction fires is proportional both to
a rate constant and to the quantities of its reactants present.
(The rate “constant” is not constant at all; it depends on factors
such as temperature and volume.)

We aim to implement computation that is robust in the sense
that it does not depend on the rates. We produce designs that
only specify rates in qualitative terms, e.g., “fast” vs. “slow.”
(In our notation, such qualitative rates are listed above the
arrows for reactions.) Given such coarse rate categories, the
computation is exact and independent of the specific reaction
rates. In particular, it doesn’t matter how fast any “fast”
reaction is relative to another, or how slow any “slow” reaction
is relative to another – only that “fast” reactions are fast
relative to “slow” reactions.

The evolution of a biomolecular system over time can be
characterized through stochastic simulation. First proposed by
Gillespie, stochastic simulation has become the workhorse of
computational biology [12], [13], [14] – the equivalent, one
might say, of SPICE. Such simulation tracks integer quantities
of the molecular species, executing reactions at random based
on propensity calculations. Repeated trials are performed and



X

Y

0.5 0.5

D

Input

Output

Fig. 1: A two-tap moving average filter.

the probability distribution of different outcomes is estimated
by averaging the results.

B. Organization

The paper is organized as follows. First, in Section II, we
give a detailed example: we present a biomolecular implemen-
tation of a two-tap moving average filter. Then, in Section III,
we present the general methodology for synthesizing DSP
systems. To illustrate the general method, we provide a second,
detailed example: a biomolecular implementation of a biquad
filter. In Section IV, we present a general system synthesis
flow. In Section V, we provide simulation results. Finally, in
Section VI, we conclude with some remarks about potential
applications for this work.

II. EXAMPLE: A MOVING-AVERAGE FILTER

We illustrate our design methodology with a detailed ex-
ample: a finite impulse response (FIR) filter. To elucidate the
concepts, we present the design in simplified form first and
then with some refinements.

A. Simplified Form

An FIR filter is shown in Figure 1. This system computes
a moving average: given a time-varying input signal X , the
output Y is a smoother version of it. More precisely, the
output is one-half the current input value plus one-half the
previous value. We implement a biomolecular moving-average
filter with the following reactions.

g + X
slow−→ A + C

2C
fast−→ R

2A
fast−→ Y

(1)

b + R
slow−→ G

r + G
slow−→ B

g + B
slow−→ Y

(2)

X

BGR

Y

AC

0.5 0.5

Fig. 2: Two-tap moving average filter in a three-phase config-
uration.

∅ slow−→ r

R + r
fast−→ R

Y + r
fast−→ Y

∅ slow−→ g

G + g
fast−→ G

∅ slow−→ b

B + b
fast−→ B

X + b
fast−→ X

(3)

Here the symbol ∅ indicates “no reactants” meaning the
products are generated from a large or replenishable source.
The molecular types are labeled in Figure 2. In the proposed
scheme, there are three phases of computation. We color code
the molecular types in corresponding color categories: Y and
R in red; G in green; and X and B in blue.

In the group of reactions (1), the quantity of the input X
is transfered to the same quantity of types A and C (a fanout
operation). Then the quantities of A and C are reduced to half
(scalar multiplication operations). Then the quantity of A is
transfered to the output Y and the quantity of C is transfered
to R, the first of three types of a delay operation. The next
two are G and B. Once the signal has moved through the
delay operation, the quantity of B is transfered to the output
Y . (Since this quantity is combined with the quantity of Y
produced from A, this is an addition operation.)

Within each delay operation, quantities are transfered from
R to G, and then to B; this is accomplished by the group
of reactions (2). Transfers between two color categories are
enabled by the absence of the third category: red goes to green
in the absence of blue; green goes to blue in the absence of red;
and blue goes to red in the absence of green. This handshaking
ensures that the delay element takes a new value only when it
has finished processing the previous value. It is implemented
by the group of reactions (3). These continually generate the
types r, g, and b that we call “absence indicators.” These types
only persist in the absence of the corresponding signals: r in
the absence of R and Y ; g in the absence of G; and b in the
absence of X and B. They only persist in the absence because
otherwise “fast” reactions consume them quickly.

Note that the quantity of the input X is sampled in the
green-to-blue phase. We assume that an external source sup-



BGR

Delay Element

Fig. 3: RGB cycle in isolation.

plies the input. The output Y is produced in the blue-to-
red phase. We assume that an external sink consumes these
molecules.

B. Refinement

The essential aspect of the FIR design is that, within the
RGB sequence for a delay operation, the full quantity of the
preceding type is transfered to current type before the transfer
to the succeeding type begins. For example, the reaction

r + G
slow−→ B (4)

should not fire until the reaction

b + R
slow−→ G (5)

has fired to completion.
However, the rate of a reaction is proportional to the

quantities of its reactants. As molecules of R are transfered to
G, the quantity of R decreases and so Reaction (5) slows
down. With smaller quantities of R present, there will be
larger quantities of the corresponding absence indicators r
present. Meanwhile, the quantity of G increases so the rate
of Reaction (4) increases. As a result, the transfer from G to
B starts well before the transfer from R to G is complete.
Similarly, the transfers from B to R and from R to G start
earlier than they should. As a result, the iterative computation
for the operation of our FIR filter fails.

To examine this issue, let us consider the RGB cycle in
isolation, as illustrated in Figure 3. Suppose that this cycle is
implemented with the following reactions:

b + R
slow−→ G

r + G
slow−→ B

g + B
slow−→ R

∅ slow−→ r

∅ slow−→ g

∅ slow−→ b

R + r
fast−→ R

G + g
fast−→ G

B + b
fast−→ B.

(6)

Suppose that the initial quantity of R is set to some non-
zero amount, and the initial quantity of the other types is set
to zero. We will get an oscillation among the quantities of R,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Time

N
o
rm

a
liz

e
d
 Q

u
a
n
ti
ty

 

 

R

G

B

Fig. 4: Simulation of the Chemical Kinetics for the RGB
Transfer Reactions (6).

G, and B, but this oscillation is damped. This is confirmed by
the experimental results in Figure 4. Here we simulated the
chemical kinetics for the Reactions (6) [14]. In this figure, we
see that the quantities oscillate with an attenuating envelope
and converge to one third of the initial quantity of R.

A refinement to the RGB scheme solves this problem. We
include reactions that accelerate and isolate the transfers in
each phase. For the R to G phase, we add the reactions:

2G
slow−→ IG

IG
fast−→ 2G

IG + R
fast−→ 3G.

(7)

In these reactions, two molecules of G combine with one
molecule of R to produce three molecules of G. The first step
in this process is reversible: two molecules of G can combine,
but in the absence of any molecules of R, the combined
form will dissociate back into G. So, in the absence of R,
the quantity of G will not change much. In the presence
of R, the sequence of reactions will proceed, producing one
molecule of G for each molecule of R that is consumed. Due
to the first reaction 2G

slow−→ IG, the transfer will occur at a
rate proportional to the square of the quantity of G.1 Unlike
Reaction (5), the rate of transferring R to G with Reactions (7)
does not depend on the quantity of R; rather it has a quadratic
dependence on the quantity of G, so the more G we have, the
faster G is produced.

Symmetrically, we include the following reactions to trans-
fer quantities from G to B

2B
slow−→ IB

IB
fast−→ 2B

IB + G
fast−→ 3B,

(8)

1A rigorous discussion of chemical kinetics is beyond the scope of this
paper. Interested readers can consult the references [12], [13], [15] and [16].



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Time

N
o
rm

a
liz

e
d
 Q

u
a
n
ti
ty

 

 

R

G

B

Fig. 5: Simulation of the Chemical Kinetics for the RGB
transfers with the Reactions (7), (8), and (9).

and from B to R:

2R
slow−→ IR

IR
fast−→ 2R

IR + B
fast−→ 3R.

(9)

With the reactions (7), (8), and (9), we get the oscillatory
behavior that we need: these reactions effectively speed
up transfers between color categories as molecules in each
category are “pulled” to the next one. Figure 5 shows a
simulation of the chemical kinetics. We see that the quantities
of R, G, and B oscillate with constant amplitudes; there is
no attenuation at all.

With these refinements, the full set of reactions for the
moving average filter is:

2R
slow−→ IR

IR
fast−→ 2R

IR + X
fast−→ A + C + 2R

2G
slow−→ IG

IG
fast−→ 2G

IG + R
fast−→ 3G

2B
slow−→ IB

IB
fast−→ 2B

IB + G
fast−→ 3B

2Y
slow−→ IY

IY
fast−→ 2Y

IY + B
fast−→ 3Y,

(10)

g + X
slow−→ A + C

2C
fast−→ R

2A
fast−→ Y

b + R
slow−→ G

r + G
slow−→ B

g + B
slow−→ Y,

(11)

∅ slow−→ r

R + r
fast−→ R

Y + r
fast−→ Y

∅ slow−→ g

G + g
fast−→ G

∅ slow−→ b

B + b
fast−→ B

X + b
fast−→ X.

(12)

III. GENERAL DSP SYSTEM SYNTHESIS

DSP systems are generally specified in terms of four basic
modules: fanout, scalar multiplication, addition, and delay
elements. We describe biomolecular constructs for these four
modules. (These constructs are all generalizations of the con-
cepts illustrated with the moving-average filter in the previous
section.) We illustrate the general design method with a second
detailed example, a biquad filter.

A. Scalar Multiplier

Scalar multiplication performs the operation

y =
c2

c1
x

where c1 and c2 are constants. This operation is implemented
by choosing reactions with the appropriate coefficients:

c1X −→ c2Y. (13)

Every time this reaction fires, c1 molecules of X get transfered
to c2 molecules of Y . Once the reaction has fired to comple-
tion, i.e., fully consumed all molecules of X , the requisite
operation of scalar multiplication is complete.

B. Adder

Addition performs the operation

y = x1 + x2.

This operation is implemented by choosing several reactions
with the same product:

X1 −→ Y
X2 −→ Y.

(14)

Once both reactions have fired to completion, the quantity of
Y will be the former quantity of X1 plus the former quantity
of X2.



C. Fanout

The fanout operation duplicates quantities. It is implemented
by choosing a reaction producing several different products
from a single reactant:

X −→ Y1 + Y2. (15)

Once this reaction has fired to completion, both the quantity of
Y1 and the quantity of Y2 will be equal to the former quantity
of X .

A transfer module is a special case of fanout module. It
simply transfers a molecular quantity from one type to another:

X −→ Y. (16)

Transfer modules are used to resolve type assignment conflicts.

D. Delay Element

A delay element in an electronic DSP system stores a signal
across successive clock cycles. It is implemented by clocked
memory. Our scheme for biomolecular computation has no
clock, of course. The system is completely asynchronous with
variable rates. Yet we still seek to implement delay operations.
We do so using “self-timed” operations based on a three-
phase handshaking protocol that transfers quantities between
molecular types based on the absence of other types. This is
the three-phase scheme discussed for the moving-average filter
in Section II.

Every delay element DEi in a DSP specification is assigned
three molecular types Ri, Gi and Bi. The following reactions
implement the delay operation:

Phase 1 reactions:

b + Ri
slow−→ Gi

2Gi
slow−→ IG,i

IG,i
fast−→ 2Gi

IG,i + Ri
fast−→ 3Gi

Y
collect−→ ∅

(17)

Phase 2 reactions:

r + Gi
slow−→ Bi

2Bi
slow−→ IB,i

IB,i
fast−→ 2Bi

IB,i + Gi
fast−→ 3Bi

∅ inject−→ X

(18)

Phase 3 reactions:

g + Bi
slow−→ Computations

2Rj
slow−→ IR,j

IR,j
fast−→ 2Rj

IR,j + Bi
fast−→ Computations + 2Rj

Computations
fast−→ Rj .

(19)

A computation cycle, in which an input value is accepted
and an output value is computed, completes in three phases. In
each phase the signals are transfered from molecular types in
one color category to the next. Computations are carried out

Red Green

Blue

Phase 1

Phase 2
Phase 3

Computations

Fig. 6: The three-phase transfer scheme.

in Phase 3, during the transfer from blue to red. The transfer
diagram is shown in Figure 6. The computation reactions fire
much faster than the transfer reactions, therefore Rj molecules
are immediately produced from Bi molecules. Note that Rj

molecules produced in Phase 3 will be a red type of any
succeeding delay element DEj along the signal path from
DEi.

The following reactions generate the absence indicators
types.

∅ slow−→ r

Ri + r
fast−→ Ri

Y + r
fast−→ Y

∅ slow−→ g

Gi + g
fast−→ Gi

∅ slow−→ b

Bi + b
fast−→ Bi

X + b
fast−→ X

(20)

The absence indicators r, g and b are continuously and
slowly generated. However, they only persist in the absence
of the corresponding color-coded signal molecules, since they
are quickly consumed by the signal molecules if these are
present. This feature assures that so long as any reaction in a
given phase has not fired to completion, the succeeding phase
cannot begin.

There are only these three absence indicators r, g and b,
regardless of the number of delay elements. Through these
common absence indicators, the corresponding phases of all
delay elements are synchronized: all the delay elements must
wait for each to complete its current phase before they can all
move to the next phase.

E. Example of an Biquad filter

We illustrate our synthesis method with a second example.
Biquad filters are basic building blocks of modern DSP
systems [10]. A biquad filter is shown in Figure 7 and
the corresponding molecular types are labeled in Figure 8.
This infinite impulse response (IIR) filter is realized by the



following reactions:

b + R1
slow−→ G1

2G1
slow−→ IG1

IG1
fast−→ 2G1

IG1 + R1
fast−→ 3G1

b + R2
slow−→ G2

2G2
slow−→ IG2

IG2
fast−→ 2G2

IG2 + R2
fast−→ 3G2,

(21)

r + G1
slow−→ B1

2B1
slow−→ IB1

IB1
fast−→ 2B1

IB1 + G1
fast−→ 3B1

r + G2
slow−→ B2

2B2
slow−→ IB2

IB2
fast−→ 2B2

IB2 + G2
fast−→ 3B2,

(22)

g + B1
slow−→ R2 + F + C

2R2
slow−→ IR2

IR2
fast−→ 2R2

IR2 + B1
fast−→ 3R2 + F + C

g + B2
slow−→ H + E

2Y
slow−→ IY

IY
fast−→ 2Y

IY + B2
fast−→ 2Y + H + E

g + X
slow−→ R1 + A

IY + X
fast−→ 2Y + R1 + A

2R1
slow−→ IR1

IR1
fast−→ 2R1

IR1 + X
fast−→ 3R1 + A,

(23)

6A
fast−→ Y

6C
fast−→ Y

6E
fast−→ Y

6F
fast−→ X

6H
fast−→ X.

(24)

Input Output

D

D1/6

1/6

1/6

1/6

1/6

X Y

Fig. 7: A biquad filter.

X

B1

G1

R1

Y
A

F

1/6 B2

G2

R2

1/6

1/61/6

C

EH

X

X

X

X

X Y

Y

Y

Y

Y

Fig. 8: Biquad filter in a three-phase configuration.

The absence indicator reactions are:

∅ slow−→ r

R1 + r
fast−→ R1

R2 + r
fast−→ R2

Y + r
fast−→ Y

∅ slow−→ g

G1 + g
fast−→ G1

G2 + g
fast−→ G2

∅ slow−→ b

B1 + b
fast−→ B1

B2 + b
fast−→ B2

X + b
fast−→ X.

(25)

IV. SYNTHESIS FLOW

We present guidelines for an automated synthesis flow.
The DSP system is represented by a block diagram G(V,E),
where the vertex set V represents basic modules – scalar
multiplication, addition, fanout and delay element – and the
edge set E represents connections. Each edge ei is assigned a
molecular type. The quantity of this type represents the signal
flowing through ei. The types are assigned as follows:

1) Each delay element DEi ∈ V is assigned three color-
coded molecular types Ri, Gi and Bi. Here Ri cor-
responds to the input edge, Gi is the internal storage
molecule type, and Bi corresponds to the output edge.



X

Y

Input

Output

2D

(a) A filter with two delay elements directly con-
nected.

X

Y

Input

Output

D DT

T

B1 B2R2R1

Y

Y

(b) Molecular type assignment.

Fig. 9: An example of molecular type assignment. Transfer
modules are denoted by a circle with letter “T”.

2) The system input and output are assigned types X and
Y , respectively. (For simplicity, we only consider sys-
tems with a single input and a single output. However,
the method easily generalizes to systems with multiple
inputs and outputs.)

3) The incoming edges of each adder are assigned the
same molecular type. With all the inputs assigned the
same type, the system implicitly performs an addition
operation: each reaction produces a quantity that is
added to the sum.

4) If there are assignment conflicts, transfer modules are
included. For instance, if an adder has been assigned two
conflicting types T1 and T2, say because its inputs are
from different delay operations, then a transfer reaction
is included:

T1
fast−→ T2.

This reaction transfers the quantity of T1 to T2.
5) Next, if there any unassigned edges, these are assigned

arbitrary molecular types (without creating conflicts).
6) With all edges assigned non-conflicting molecular types,

reactions are generated for each vertex according to the
template of reactions (13) to (19).

7) Finally, the absence indicator reaction set (20) is in-
cluded. (Note that there is a single type r, a single type
g and single type b for the entire system, regardless of
the number of delay elements.)

Figure 9 shows an example of transfer modules. Figure
9a shows a simple filter for time-interleaved input data. It
contains two delay elements. Since these two delay elements
are directly connected, a transfer module is included for
converting B1 to R2. Similarly, a second transfer module is
included for transferring B2 to Y , the molecular type for
the adder. These molecular type assignments are shown in
Figure 9b.

V. SIMULATION RESULTS

We present simulation results for our biomolecular imple-
mentations of the two-tap moving-average and biquad filters,

discussed in Sections II and III. We used Gillespie’s stochastic
simulation algorithm (SSA) [12], [13]. It performs a Monte
Carlo simulation of the chemical kinetics.

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

Cycle

Q
u
a
n
ti
ty

 

 

Input

Theoretical Output

Simulated Output

Fig. 10: Simulation results of moving average filter.

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

400

450

500

Clock Cycle

Q
u
a
n
ti
ty

 

 

Input

Theoretical Output

Simulated Output

Fig. 11: Simulation results of biquad filter.

First, we performed simulations with a rate of 1 for “slow”
and a rate of 100 for “fast.” We generated 1000 trajectories
and computed the mean values. The results for the two filters
are plotted in Figures 10 and 11. The input for the moving-
average filter is a random sequence and for the biquad filter
it is a step followed by several pulse stimuli. The figures
show the quantity of the input and output – types X and
Y respectively – as a function of computational cycles. A
cycle begins when we supply input molecules. It completes
once we remove all the output molecules. (We always allow
sufficient time for each cycle to complete before initiating the
next.) The figures show the theoretical output, i.e., an exact
calculation of filtering of the input, with a solid line. They
show the simulated output with stars. Note that the simulated
output has nearly perfect agreement with the theoretical output.

Next, we performed a sequence of simulations with different
values for the fast-to-slow ratio, λ. We used the same input



TABLE I: Relative error in simulations.
λ Moving Average Biquad
10 3.2479× 10−3 1.8531× 10−3

100 8.3496× 10−4 1.6890× 10−3

1000 5.2885× 10−4 1.5048× 10−3

sequence each time, and varied λ from 10 to 1000, each time
generating 1000 trajectories. The average relative errors for
both filters for different values of λ are shown in Table I.

We see that the relative error decreases as λ increases.
This is because a higher λ lowers the probability that a slow
reaction misfires: i.e., it fires before all fast reactions are
complete. We see that generally the biquad filter has a higher
error than the moving-average filter. This is expected, since the
IIR filters involve feedback that leads to error accumulation. In
addition, there are more reactions for this filter; having more
reactions increases the chance of obtaining an incorrect firing
order.

VI. REMARKS

We are exploring the mechanism of DNA-strand displace-
ment advocated by Erik Winfree’s group at Caltech as an
experimental chassis [17]. They have shown that the kinetics of
arbitrary chemical reactions can be emulated with DNA. They
provide an assembler that accepts a set of chemical reactions
with nearly any rate structure and delivers the corresponding
DNA sequences for the displacement reactions. Reaction rates
are controlled by designing sequences with different binding
strengths. The binding strengths are controlled by the length
and sequence composition of “toehold” sequences. With the
right choice of toehold sequences, reaction rates differing by
as much as 106 can be achieved. Our contribution can be
positioned as the “front-end” of the design flow; the DNA
assembler and experimental chassis described by these authors
constitute the “back-end.”

On one hand, the design flow discussed here is narrow
in scope. It pertains to compiling high-level specifications of
computation into abstract reactions. On the other hand, the
flow is a de novo approach to rational design of functionality,
and so potentially much more general in its applicability
than methods based on appropriating and reusing existing
biological modules.

The purpose of the flow is not to produce computation
per se; molecular computing will never be competitive with
conventional computing for tasks such as number crunching.
Rather the main goal of the field is to develop embedded
controllers of molecular and chemical processes. Imagine a
situation where a decision feedback equalizer is implemented
entirely through biomolecular reactions: the inputs and outputs
are quantities of proteins; the result is a decision to deliver a
drug or not, performed adaptively and autonomously.

Beyond the immediate challenges of automating the design
of specific functions, a grander challenge is the design of a
fully “technology independent” biomolecular CPU. At present,
we know how to implement arithmetic and logical functions
with biomolecular constructs [8]. We also know how to im-
plement sequential, iterative operations transferring quantities
between molecular types (contributions of [18] and this paper).

The next step – more challenging than it seems – is to put
together these elements to create a full-fledged processor,
with a simple instruction set. The entire specification of the
CPU would consist of technology-independent biomolecular
reactions: abstract molecular types, such as a, b, c, etc., and
reactions with qualitative rates, such as “slow” and “fast.” This
CPU design could be mapped onto DNA strand-displacement
reactions or implemented through custom-gene synthesis in E.
coli or yeast.

REFERENCES

[1] D. M. Widmaier, D. Tullman-Ercek, E. A. Mirsky, R. Hill, S. Govin-
darajan, J. Minshull, and C. A. Voigt, “Engineering the Salmonella type
III secretion system to export spider silk monomers,” Molecular Systems
Biology, vol. 5, no. 309, pp. 1–9, 2009.

[2] M. Sedlak and N. Ho, “Production of ethanol from cellulosic biomass
hydrolysate using generically engineered yeast,” Applied Biochemistry
and Biotechnology, vol. 114, no. 1-3, pp. 403–416, 2004.

[3] D. Ro, E. Paradise, M. Ouellet, K. Fisher, K. Newman, J. Ndungu,
K. Ho, R. Eachus, T. Ham, M. Chang, S. Withers, Y. Shiba, R. Sar-
pong, , and J. Keasling, “Production of the antimalarial drug precursor
artemisinic acid in engineered yeast,” Nature, vol. 440, pp. 940–943,
2006.

[4] R. Weiss, G. E. Homsy, and T. F. Knight, “Toward in vivo digital
circuits,” in DIMACS Workshop on Evolution as Computation, 1999,
pp. 1–18.

[5] L. Qian and E. Winfree, “A simple DNA gate motif for synthesizing
large-scale circuits,” in DNA Computing, 2009, pp. 70–89.

[6] B. Fett, J. Bruck, and M. D. Riedel, “Synthesizing stochasticity in
biochemical systems,” in Design Automation Conference, 2007, pp. 640–
645.

[7] B. Fett and M. D. Riedel, “Module locking in biochemical systhesis,”
in International Conference on Computer-Aided Design, 2008, pp. 758–
764.

[8] A. Shea, B. Fett, M. D. Riedel, and K. Parhi, “Writing and compiling
code into biochemistry,” in Proceedings of the Pacific Symposium on
Biocomputing, 2010, pp. 456–464.

[9] A. Oppenheim, R. Schafer, and J. Buck, Discrete-Time Signal Process-
ing. Prentice-Hall, 1999.

[10] K. K. Parhi, VLSI Digital Signal Processing Systems. John Wiley &
Sons, 1999.

[11] L. Nagel and D. Pederson, “Simulation program with integrated circuit
emphasis,” in Midwest Symposium on Circuit Theory, 1973.

[12] D. Gillespie, “Exact stochastic simulation of coupled chemical reac-
tions,” Journal of Physical Chemistry, vol. 81, no. 25, pp. 2340–2361,
1977.

[13] M. Gibson, “Computational methods for stochastic biological systems,”
Ph.D. dissertation, California Institute of Technology, 2000.

[14] S. Mauch, “Cain: Stochastic simulations for chemical kinetics.”
[Online]. Available: http://cain.sourceforge.net

[15] D. T. Gillespie, “A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions,” Journal of
Computational Physics, vol. 22, no. 4, pp. 403–434, 1976.

[16] ——, “Stochastic simulation of chemical kinetics,” Annual Review of
Physical Chemistry, vol. 58, pp. 35–55, 2006.

[17] D. Soloveichik, G. Seelig, and E. Winfree, “DNA as a universal substrate
for chemical kinetics,” Proceedings of the National Academy of Sciences,
vol. 107, no. 12, pp. 5393–5398, 2010.

[18] H. Jiang, M. D. Riedel, and K. K. Parhi, “Digital signal processing
with biomolecular reactions,” in IEEE Workshop on Signal Processing
Systems, 2010, pp. 237–242.


