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Abstract—In the paradigm of stochastic computing, arithmetic functions are computed on randomized bit streams. The method
naturally and effectively tolerates very high clock skew. Exploiting this advantage, this paper introduces polysynchronous clocking, a
design strategy in which clock domains are split at a very fine level. Each domain is synchronized by an inexpensive local clock.
Alternatively, the skew requirements for a global clock distribution network can be relaxed. This allows for a higher working frequency
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1 INTRODUCTION

S Tochastic Computing (SC), first advocated by Gaines in
1969 [12], has received renewed attention by the EDA

community in recent years [5], [6], [17], [19], [22], [24], [25],
[29], [30], [32], [34], [35], [36], [37], [44]. In SC designs, logical
computation is performed on randomized bit streams, with
numerical values encoded as probabilities: a real value x in
the interval [0, 1] is represented by a stream with bits each
having independent probability x of being 1.

Such a representation has an advantage over conven-
tional binary radix in terms of error tolerance. Suppose
that the environment is noisy: bit flips occur and these
afflict all the bits with equal probability. With a binary radix
representation, in the worst case, the most significant bit
gets flipped, resulting in a large error. In contrast, with
a stochastic representation, all the bits in the stream have
equal weight. A single flip results in a small error. This error
tolerance scales to high error rates: multiple bit flips produce
small and uniform deviations from the nominal value.

More compelling than the error tolerance is the simplic-
ity of the SC designs. Complex functions can be imple-
mented with remarkably simple logic. Multiplication can
be performed with a single AND gate. Functions such
as polynomial approximations of trigonometric functions
can be implemented with less than a dozen gates. Over a
wide range of arithmetic functions, a reduction in area of
50× or 100× compared to conventional implementations is
common [4], [22].

A more compelling advantage still might be the aspect
of SC exploited in the paper: SC circuits naturally and effec-
tively tolerate very high clock skew. Note that a stochastic
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representation is uniform: the value that is represented by
a bit stream is simply the fraction of time that the signal
is high. Suppose that the bits in different input streams are
temporally misaligned, that is to say, the bit transitions do
not line up correctly in time. The SC circuit will compute
an output value based on the input values it sees at any
moment in time (ignoring subtleties such as setup and hold
times). Since it is only the fraction of time that the signal is
high that matters, averaged over time, the result of the SC
operation will be correct.

This paper introduces polysynchronous clocking, a de-
sign strategy for SC circuits in which clock domains are
split at a very fine level. We explore two strategies. The
first is to synchronize each domain by an inexpensive local
clock, such as an inverter ring. This obviates the need for
an expensive global clock distribution network (CDN). The
second is to keep a global CDN but relax the clock skew
requirements between domains. This allows for a higher
working frequency and so lower latency.

We quantify the area, speed, and energy saving advan-
tages of both approaches. Our experimental results show
that replacing a global CDN with local clocks significantly
improves the area, latency, and energy consumption for
large SC designs. For smaller SC designs a “relaxed”
global CDN is a more efficient choice. We show that
circuits designed with either of these “polysynchronous”
approaches are as tolerant of errors as conventional syn-
chronous stochastic circuits.

The paper is structured as follows. In Section 2, we
present background material, including a general discussion
of CDNs, clock skew, and stochastic computing. In Section 3,
we introduce polysynchronous clocking. In Section 4, we
describe two approaches to polysynchronous system design:
(1) replacing a global CDN with locally generated clocks,
and (2) relaxing a global CDN. In Section 5, we provide a
case study comparing the cost and benefits of conventional
design with CDNs to polysynchronous designs, quantifying
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the area, speed and energy advantages. In Section 6, we
compare the error tolerance of polysynchronous stochastic
circuits to conventional synchronous stochastic circuits. Fi-
nally, in Section 7 and 8, we discuss related work and draw
conclusions.

2 BACKGROUND

2.1 Clock Distribution Networks

All electronic systems are inherently asynchronous in na-
ture. By carefully choreographing transitions with clock
signals, asynchronous circuitry can be adapted to appear to
behave synchronously. Such synchronism brings significant
advantages: it greatly simplifies the design effort; also, with
predictable timing, one can make performance guarantees.
However, synchronism comes at a significant cost: one must
create a clock distribution network (CDN).

The CDN distributes the clock signal from a single
oscillator to stateholding components, such as flip-flops. The
primary design goal for CDNs is to maintain signal integrity
while distributing the clock widely. In the ideal case, transi-
tions in the clock signal should arrive at all state-holding
elements at precisely the same moment (so there is zero
clock uncertainty). Achieving this is difficult and costly in
terms of design effort and resources. In modern large-scale
integrated circuits, the CDN accounts for significant area,
consumes significant power, and often limits the overall
circuit performance [11], [16], [45]. With increasing variation
in circuit parameters, designing CDNs with tolerable clock
uncertainty is becoming a major design bottleneck.

There are two kinds of variations that lead to uncertainty
in the arrival time of the clock edge at sequential circuit
elements: spatial and temporal. Spatial variations, known
as skew, affect the arrival of the various clock edges at the
sequential elements within a single clock cycle. Temporal
variations, known as jitter, affect the arrival time of the
clock edges at the sequential elements across different clock
cycles [10].

There are a number of factors that contribute to un-
certainty: differences in line lengths from the clock source
to clocked registers; differences in delays of distributed
buffers; differences in passive interconnect parameters,
such as line resistivity, dielectric constants and thickness,
via/contact resistance, line and fringing capacitance, and
line dimensions; and differences in active device parame-
ters, such as MOS threshold voltages and channel mobilities,
which affect the delay of active buffers [11].

Even when designed to be zero, environmental and
processing variations can nonetheless lead to significant
amounts of clock uncertainty. Various strategies are used
to minimize the uncertainty in the delivery of clock signals.
For instance, buffers and inverters can be inserted to balance
the delays between the clock source and the clock sinks.
However, this costs – both in area and design effort.

Skew can limit circuit performance, since a circuit must
be clocked at a lower frequency to tolerate it. If unaccounted
for, clock skew can cause timing-related errors. There is a
designer’s rule of thumb that clock skew should be less than
10 percent of the clock period. As clock frequency goes up,
more complex CDNs are required to keep skew at a constant
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Fig. 1: Stochastic Number Generator.

fraction of the clock period. Increasing die size, clock loads,
and process variability magnify the challenge [45].

In summary, for modern integrated circuits, the global
CDN is a major bottleneck in terms of design effort, area,
and performance. Stochastic computing offers skew toler-
ance. In Section 4, we will explain how this feature can be
used to mitigate the costs: either the global CDN can be
eliminated entirely; or one can design a much less costly
global CDN that tolerates skew.

2.2 Stochastic Computing

In the paradigm of stochastic computing (SC), circuits oper-
ate on random bit streams where the signal value is encoded
by the probability of obtaining a one versus a zero. In the
unipolar stochastic representation, each real-valued number
x (0 ≤ x ≤ 1) is represented by a sequence of random bits,
each of which has probability x of being one and probability
1− x of being zero. In the bipolar representation, each real-
valued number y (−1 ≤ y ≤ 1) is represented by a sequence
of random bits, each of which has probability y+1

2 of being
one and probability 1− y+1

2 of being zero.
This representation is much less compact than a binary

radix. However, complex operations can be performed with
very simple logic. In particular, arithmetic functions, con-
sisting of operations like addition and multiplication can be
implemented very efficiently. Complex functions, such as
exponentials and trigonometric functions, can be computed
through polynomial approximations [22], [37]. Because the
bit stream representation is uniform, with all bits weighted
equally, circuits designed this way are highly tolerant of soft
errors (i.e., bit flips).

Given an input value, say in binary radix, the conven-
tional approach for generating a stochastic bit stream with
probability x is as follows. Obtain an unbiased random
value 0 ≤ r ≤ 1 from a random [43] [9] or pseudorandom
source [13], [18]; compare it to the target value x; output
a one if r ≤ x and a zero otherwise. Figure 1 illustrates
the approach. The “random number generator” is usually a
linear-feedback shift register (LFSR), which produces high
quality pseudo-randomness [13]. In this approach, the pe-
riod of the clock feeding the generator corresponds to the
duration of a single bit in the output stream. Assuming that
the pseudo-random numbers are uniformly distributed be-
tween 0 . . . 2M − 1, the value stored in the constant number
register should be 2M · x. In the output, each bit is one with
pseudo-probability 2M · x/2M = x [7], [12].

2.3 Stochastic Operations

2.3.1 Multiplication

In SC multiplication can be implemented using a standard
AND gate for the unipolar coding format and an XNOR gate
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Fig. 2: Example of stochastic multiplication using an AND gate.

Fig. 3: Stochastic multiplication using an AND with unsynchronized bit
stream.

for the bipolar coding format [36]. Fig. 2 shows the multi-
plication of two 10-bit unipolar stochastic streams using an
AND gate.

The value represented by a bit stream is the time that the
signal is high divided by the total length of the stream. Fig. 3
illustrates an example of multiplying two unsynchronized
bit streams representing 0.6 and 0.5. As shown, the value
represented by the bit stream at the output of the AND gate
is 0.3, the value one expects when multiplying 0.6 by 0.5.

2.3.2 Scaled Addition and Subtraction
Stochastic values are restricted to the interval [0, 1] (in the
unipolar case) or the interval [-1, 1] (in the bipolar case). So
one cannot perform addition or subtraction directly, since
the result might lie outside these intervals. However, one
can perform scaled addition and subtraction. These oper-
ations can be performed with a multiplexer (MUX). Fig. 4
illustrates the operation 1

2A+ 1
2B.

Fig. 5 illustrates another example of scaled addition, this
time on two unsynchronized bit streams representing 0.25
and 0.5. As expected, the output is a bit stream representing
0.375, the result of the scaled addition.

2.3.3 FSM-based operations
More complex functions can be implemented in SC using
finite state machines (FSMs). The stochastic implementation

Fig. 4: Example of stochastic scaled addition using a MUX unit.

Fig. 5: Stochastic scaled addition using a MUX with unsynchronized bit
streams.

S0 S1 S2 S3 S4 S5 S6 S7

X X X X X X X

X X

X X X X X X XY=1 Y=1 Y=1 Y=1 Y=0 Y=0 Y=0 Y=0

(a)

S0 S1 S2 S3 S4 S5 S6 S7

X X X X X X X

X X

X X X X X X XY=0 Y=0 Y=0 Y=0 Y=1 Y=1 Y=1 Y=1

(b)

S0 S1 S2 S3 S4 S5 S6 S7

X X X X X X X

X X

X X X X X X XY=1 Y=0 Y=1 Y=0 Y=0 Y=1 Y=0 Y=1

(c)

Fig. 6: State transition diagram of the FSM implementing a) the stochas-
tic exponentiation function b) the stochastic tanh function c) stochastic
absolute value function. For details of the implementation, the readers
are referred to [23].

of the exponentiation function and the tanh function were
developed by Brown and Card [7]. Li and Lilja [21] also
developed an FSM-based stochastic absolute value function.
The state transition diagrams of the FSMs implementing
these functions are shown in Fig. 6. Assuming that the input
to these FSMs is a random signal that is high a fraction
X of the time, the output signal Y converges to expected
value: a fraction of time at high equal to exp(X), tanh(X)
and abs(X). Note that these FSMs only differ in how the
outputs are computed from the current state. Transition
diagrams with 8 states are shown here; these can readily
be generalized to FSMs with more states.

2.4 Stochastic Circuits

Stochastic computing has been applied to a wide variety
of applications, including image and signal processing ap-
plications. In this paper, we use circuit implementations of
three fairly complex image processing algorithms as case
studies: Robert’s cross edge detection, Median filter based
noise reduction circuit, and image segmentation based on
stochastic kernel density estimation.

Fig. 7: Stochastic implementation of the Robert’s cross edge detection
algorithm [20].
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2.4.1 Robert’s cross edge detection
Robert’s cross edge detection algorithm is a well-known
and widely studied algorithm. A stochastic implementation
of this algorithm, proposed in [22], is shown in Fig. 7.
Each Robert’s cross operator consists of a pair of 2 × 2
convolution kernels that process an image pixel based on
its three neighbors as follows

yi,j =
1

2
× (

1

2
|xi,j − xi+1,j+1|+

1

2
|xi,j+1 − xi+1,j |) (1)

where xi,j is the value of the pixel at location (i, j) of the
original input image and yi,j is the output value computed
for the same location in the output image. In the circuit
of Fig. 7, three multiplexers perform addition and subtrac-
tion, while two finite-state-machine based stochastic circuit
perform the required absolute value operations. Since this
circuit operates on signed values, all streams must be in the
bipolar format.

2.4.2 Median Filter Noise Reduction
The median filter replaces each pixel of an input image
with the median of neighboring pixels. It is quite popular
because, for certain types of random noise, it provides
excellent noise-reduction capabilities [14]. A hardware im-
plementation of the 3x3 median filter based on a sorting
network is shown in Fig 8. Each basic sorting unit used
in this circuit is implemented with the circuit presented in
Fig. 9. In total, the median filter circuit requires 19 basic
sorting units (57 MUX units and 19 FSM-based stochastic
tanh circuits.)
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Fig. 8: Hardware implementation of the 3x3 median filter based on a
sorting network [22].
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Fig. 9: Stochastic implementation of basic sorting unit.

2.4.3 Kernel Density Estimation-based Image Segmenta-
tion
Image Segmentation based on Kernel density estimation
is an image processing algorithm which is used in object

Fig. 10: Stochastic implementation of the KDE-based image segmenta-
tion algorithm [20].

recognition and tracking applications to extract changes in
a video stream in real time. Using a probability density
function (PDF), the distribution of intensity values a pixel
will have at time t can be estimated. A stochastic imple-
mentation of this algorithm based on 32 recent frames of
the input video, proposed in [20], is shown in Fig. 10. Let
Xt, Xt−1, Xt−2, ..., Xt− n be recent samples of intensity
values of a pixel X . The stochastic circuit proposed in [20]
uses the following formula as the probability estimator:

PDF (Xt) =
1

n

n∑
i=1

e−4|Xt−Xt−i| (2)

Using this probability estimator, a pixel is considered a
background pixel if PDF (Xt) is less than a predefined
threshold value. In total, the circuit includes 64 MUXs, 32
FSM-based stochastic exponentiation circuits, and one FSM-
based stochastic tanh circuit.

3 POLYSYNCHRONOUS CLOCKING

With a stochastic representation, computational units can
tolerate skew in the arrival time of their inputs. This stems
from the fact that the stochastic representation is uniform:
all that matters in terms of the value that is computed is the
fraction of time that the signal is high. The correct value is
computed even when the inputs to a computational unit are
misaligned temporally. Consequently, precise synchroniza-
tion between the arrival time of input values to logic gates
does not matter. This observation motivates the topic of this
paper: polysynchronous clocking.

Consider an AND gate, responsible for multiplying two
unipolar input bit streams, P1 and P2, generated by stochas-
tic number generators driven by two clocks with different

Fig. 12: An AND gate connected to polysynchronous clock sources.
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Fig. 11: Input clock signals and the corresponding output from connecting polysynchronous inputs to an AND gate.

TABLE 1: Different observed lengths of high pulses at the output of the
AND gate and the number of occurrences of each one for three pairs of
clock periods when executing the multiplication operation for 1000ns.

T1=2ns
T2=3.5ns

T1=2ns
T2=3.2ns

T1=1.8ns
T2=3.2ns

Length # Length # Length #
0.25 72 0.2 63 0.1 35
0.50 72 0.4 63 0.2 35
0.75 71 0.6 62 0.3 35
1.00 142 0.8 62 0.4 35

- - 1.0 125 0.5 35
- - - - 0.6 35
- - - - 0.7 35
- - - - 0.8 34
- - - - 0.9 138

Total High 249.25 249.60 249.40

periods, T1 and T2. To simplify the problem, we first connect
two clocks with 50 percent duty cycles directly to the inputs
of an AND gate (Fig. 12). This is equivalent to connecting
two stochastic streams both representing P=0.5. Therefore,
the expected output value is Y=0.25. We want to verify
the functionality of performing multiplication using an
AND gate according to three different scenarios: 1) T1=2ns,
T2=3.5ns, 2) T1=2ns, T2=3.2ns, and 3) T1=1.8ns, T2=3.2ns.

Fig. 11 illustrates the input signals as well as the output
signal in the case where T1=1.8ns and T2=3.2ns for 20ns of
operation. Continuing the operation for about 1000ns will
produce a good view of the different lengths of high pulses
that are observed at the output of the AND gate. Dividing
the total fraction of the time that the output signal is high by
the total time gives the result of the multiplication operation.
Table 1 presents results for the three selected cases of clock
periods. It lists the number of occurrences of high pulses of
each length that is observed, as well as the total time of the
high pulses.

As can be seen in Table 1, when we vary the periods
of the two clock sources, the total time that the output is
high does not change much. The length of the observed
high pulses and the number of occurrences of each changes,
but the total fraction of the time that the output is high
is very close to 250ns. Dividing 250ns by 1000ns produces
0.25, the expected output of multiplying the two input
streams. This example provides an intuitive explanation of
why polysynchronous stochastic operations work: temporal
misalignment of input values does not affect the accuracy of
the computation.

Next we analyze the functionality of a MUX unit per-
forming scaled addition with temporally misaligned inputs.
The analysis is similar to that of an AND gate performing
multiplication. Note, however that the MUX unit has an
extra select stream performing the scaling. To study the
functionality of the MUX unit we connect three polysyn-
chronous clocks with distinct periods, T1, T2, and T3, to the

TABLE 2: The measured output of the MUX when three polysyn-
chronous clocks with distinct periods are connected to its inputs for
1000ns.

T1 T2 T3 Total
High Time

Measured
Output

Expected
Output

2.00 1.80 3.75 499.43 0.499 0.500
1.90 2.63 2.12 500.21 0.500 0.500
3.20 1.60 2.00 498.80 0.499 0.500
2.87 2.43 2.10 499.23 0.499 0.500

first, second, and select inputs of the MUX. We compare
the fraction of time that the output is high divided by the
total time to the expected value, (1/2+1/2)/2. The results
are shown in Table 2. These results are similar to what we
saw for the multiplication operation. The measured output
values are essentially equal to the expected output value of
0.5.

Now we discuss the general case of operations on
stochastic streams generated by SNGs that are driven by
separate clocks, and so are not synchronized. Table 3
presents the results of trials for stochastic multiplication and
scaled addition. In this table, T1 and T2 are the periods
of the clocks of the SNGs responsible for generating the
first and the second streams, respectively. For the scaled
addition operations, T3 is the period of the clock of the SNG
responsible for generating the select stream, which is set
to 0.5. Note that the results presented in Table 3 are based
on bit streams of length 1024, generated with 32-bit LFSRs.
This configuration produces a good Bernoulli distribution of
probabilities for the individual bits in the stream. As can be
seen in this table, all of the measured values are very close to
the expected values. Indeed, in spite of the polysynchronous
clocking, the results are accurate to within the error bound
expected for stochastic computation [36].

Proof. Polysynchronous stochastic signals can be dis-
cretized into digital stochastic bit streams by dividing the
signals into pulses of size ε and assigning 0/1 values to these
pulses. Suppose that we discretize two polysynchronous
signals, X and Y , into digital bit streams, X(t) and Y (t).
Assuming that the fraction of time the polysynchronous
signals are high are x and y, respectively, the probabil-
ity that each bit in the discretized streams is one is also
P (X = 1) = x and P (Y = 1) = y, respectively. If the
discretized bit streams are stochastically independent, by
connecting them to the inputs of an AND gate, the output
is a bit stream Z(t), where:

Z = P (Z = 1) = P (X = 1 and Y = 1)

= P (X = 1)P (Y = 1) = x · y

Thus, correspondingly, for any two independent polysyn-
chronous signals, an AND gate computes the product of the
values:
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TABLE 3: Stochastic multiplication and scaled addition, using an AND gate and a MUX, respectively, with inputs generated by unsynchronized
SNGs.

AND Output MUX Output
In1 T1(ns) In2 T2(ns) T3(ns) Measured Expected Measured Expected
0.50 2.10 0.50 2.30 2.00 0.247 0.250 0.502 0.500
0.35 2.82 0.66 3.11 3.68 0.237 0.231 0.498 0.505
0.27 2.81 0.48 2.36 3.61 0.128 0.129 0.372 0.375
0.18 1.60 0.53 3.70 2.20 0.096 0.095 0.350 0.355

∫ T

0

Z dt =

∫ T

0

XY dt = x · y

as ε approaches zero. Similarly, we can show that connecting
independent polysynchronous signals to the main and to
the select inputs of a MUX produces the result of scaled
addition/subtraction. Note that polysynchronous signals
generated by identical SNGs but driven by different clocks,
are expected to be independent, since they not synchronized
in any way.

For a circuit-level verification of the polysynchronous
idea, we implemented the SPICE netlist of the Roberts cross
stochastic circuit. Simulations were carried out using a 45-
nm gate library in HSPICE on 1000 sets of random input
values, for both synchronous and polysynchronous clocking
conditions. Each set of inputs consisted of four different
random values. For the conventional synchronous clocking
condition, the circuits clock period was fixed at 1ns. For the
polysynchronous clocking conditions, clock periods were
selected randomly in the range from 1ns to 2ns (so 100
percent variation). Note that the period corresponds to a
single bit in the random stream.

The accuracy of the results was computed by calculating
the difference between the expected value and the mea-
sured value. On 1000 trials, we found that the mean of
the output error rates was 4.85 percent for the synchronous
and 4.45 percent for the polysynchronous approach. Hence,
the polysynchronous stochastic circuits are essentially as
accurate as conventional synchronous circuits.

With polysynchronous clocking, the global clock signal
of a circuit and its associated CDN can be replaced by
multiple inexpensive clocks for different local domains. The
division into domains can be performed down to a very fine
level, even up to a handful of gates. The local clocks can be
generated with simple inverter rings.

In subsequent sections, we evaluate the idea of polysyn-
chronous clocking with case studies, presenting detailed
experimental results.

4 POLYSYNCHRONOUS SYSTEM DESIGN:
A CASE STUDY

In the polysynchronous stochastic design paradigm, the
system is divided into three main units: 1) stochastic number
generators (SNGs) that convert input values, perhaps from
analog sources, into the corresponding stochastic signals; 2)
computational units that accept stochastic input signals, and
perform operations, producing stochastic output signals;
and 3) stochastic output converters that produce output
signals, perhaps for analog outputs such as voltage accumu-
lators. The output converters measure the fraction of time

the output signals are high divided by the total operation
time to produce the final values.

Suppose that we are given an input n × n gray-scale
image to process with a Robert’s cross circuit. We can use
n2 instances of the Robert’s cross circuit, presented in Fig. 7,
to process each of the pixels concurrently. Fig. 13 shows
a diagram of such a parallel circuit for n = 8. Call each
instance a Robert’s cross cell. Each cell converts one input
pixel value, represented as a stochastic signal, into an output
pixel value, represented as stochastic signal. An SNG in
each cell is responsible for the input conversion. The cell
communicates with its neighbor cells to receive their pixel
values, all represented as stochastic signals.

We consider three different cases to validate the concept
of polysynchronous clocking. First, we implement our case
study using a conventional synchronous approach: a global
CDN that synchronizes all cells. Next, we remove the global
CDN and instead use locally generated clocks for each cell;
now the cells will not operate synchronously. Finally, we
synthesize the circuit with a“relaxed CDN.” In each case,
we quantify the costs for the Robert’s cross circuits with 16,
64, and 256 cells.

4.1 Synchronous Design: Global CDN

In the conventional approach, a global CDN is synthesized
to synchronize all components of the system with a common
clock signal. Th arrival time of the clock signal needs to be
synchronized throughout. With variations, this requirement
for zero clock skew is challenging, requiring considerable
design effort. The larger the circuit, the more complex the

Fig. 13: 64 Robert’s Cross Cells processing a 8× 8 input image concur-
rently.
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CDN. Often, a large number of buffers must be inserted
throughout the CDN to balance the clock tree and satisfy the
arrival time requirements. In addition to the high amount
of design effort expended, the CDN consumes considerable
area and power.

4.2 Polysynchronous Design: Removing the CDN
In the first polysynchronous approach, we replace the global
CDN with unsynchronized local clocks. Two different ap-
proaches can be used to supply local domains with clock
signals: 1) Using clock signals from external sources, and 2)
self-timed local clock generators. Because of the limitation
and extra costs of I/O ports, the first approach is more
practical when there are a small number of clock domains.
With a large number of domains, self-timed local clock
generators are generally advantageous. In what follows,
we evaluate the second approach. We present quantitative
comparisons of the performance-cost gain when the global
CDN is replaced with multiple local clock generators.

Ring oscillators can be used as fast and inexpensive
local clock generators. A ring oscillator consists of an odd
number of inverter gates connected in a ring, as shown
in Figure 14. NAND and NOR gates can also be used to
build ring oscillators. Due to their longer delay, a smaller
number of NAND or NOR gates are required to achieve the
same oscillation period as an inverter ring. As a result, the
area cost of the NAND- and NOR-based oscillators is lower
than that of an inverter-based oscillator. However, due its
lower power consumption, an inverter-based oscillator is
generally more energy-efficient. The oscillation period of
a ring oscillator is twice the sum of the gate delays. The
frequency can be increased by either increasing the supply
voltage or by decreasing the number of inverters [2], [41].
Note that a ring of approximately 110 inverter gates is
necessary to generate a local clock with a period of 1ns
in 45nm technology when the supply voltage is 1V. Thus,
although relatively inexpensive, the area and power costs of
inverter rings are not insignificant.

4.3 Polysynchronous Design: Relaxed CDN
Instead of eliminating the CDN, an alternative approach
is to relax the requirements on it, permitting significant
clock skew throughout the system. This can significantly
simplify the synthesis process, saving area, lowering power,
and increasing performance by permitting the system to be
clocked at a higher speed. Obviously, this approach does not
entail the use of local clock generators.

A significant advantage that such a “relaxed CDN”
provides is ease in controlling the working frequency. With
local clocks, generated by inverter rings, the frequency will
generally be fixed (some implementations of ring oscillators
do allow for slight adjustments to the period; however, the
possible range of values is more or less fixed by the number

.......

Fig. 14: Ring oscillator circuit with odd number of stages

of inverters used). In contrast, the frequency of an external
clock provided to a “relaxed CDN” can be changed freely,
in some cases permitting significant over-clocking.

5 EXPERIMENTAL SETUP

In order to quantify the performance and cost benefits of
both approaches to polysynchronous design, that is, by
removing the CDN or relaxing it, we implemented the
Robert’s cross circuit for values of n = 4, 8, and 16 in Ver-
ilog. The SNG unit presented in Figure 1 was used in each
cell to convert the input pixel value into a corresponding
stochastic signal. A 10-bit maximal period LFSR was used in
each cell to supply the SNG with pseudo-random numbers.
We used different random number generators (different
LFSR designs, with different seeds) in the different cells
to ensure that the stochastic bit streams are uncorrelated.
Applying polysynchronous clocking can further help de-
correlate stochastic streams and can introduce additional
randomness. FSM-based SAbs circuits with 16 states were
used to implement the required absolute value function. We
used the Synopsys Design Compiler vH2013.12 [42] with a
45nm gate library to synthesize the designs.

For synthesizing the circuits with conventional global
CDNs, we considered a “clock uncertainty” value of at most
10 percent (0.1 ns for the smaller 16-cell circuit, and of
0.2 ns for the larger 64 and 256-cell circuits). This uncertainty
parameter in the Synopsys Design Compiler represents pro-
cess variations and other sources of variability that cause
variations in the clock delay. In the synthesis flow, the tool
uses extra elements, mainly delay buffers, to ensure near
zero clock skew in the signal arrival time at all components.
It produces a circuit with cells that are nearly perfectly
synchronized.

For the “relaxed CDN” approach, we allow for signifi-
cant skew and jitter by defining a clock source uncertainty
of zero and accepting some timing violations. As a result,
the tool ignores the delays due to the clock network latency
and the propagation delay in different paths. It does not
add any buffers to compensate for clock uncertainty. With
this approach, different cells are at differing distances from
the clock input source. As a result, the clock signals arriving
at different cells are not synchronized. We use this configu-
ration to test the ability of the polysynchronous approach to
tolerate the clock skew and jitter.

For the approach where we eliminate the global CDN
entirely by replacing it with local unsynchronized clocks,
we synthesized the system with 16, 64, and 256 cells, with
each cell containing an inverter ring. In order to design
the inverter rings, we first synthesized a single Robert’s
cross cell and found its critical path to be 0.49ns. SPICE-
level simulations showed that 45 inverter gates are required
to generate a clock signal with this period in the 45nm
technology when using a supply voltage of 1V. Such inverter
rings were added to each Robert’s cross cell. Table 4 shows
the area-power cost of a single Robert’s cross cell before
and after adding the inverter rings. Adding the inverter
ring incurs area and power overhead of 8 percent and 24
percent, respectively. We will show that, for large designs,
this overhead is small compared to the savings obtained by
removing the CDN.



IEEE TRANSACTION ON COMPUTERS 8

TABLE 5: Delay, area, power, and average error rate comparison of the implemented circuits for different approaches of synthesizing the CDN.

Circuit CDN Delay (ns) Area (µm2) Power (mW) Energy(pJ) Area*Delay (µm2 × µs) Error Rate (percent)

Robert
16-cell

Synchronous 1.56 4485 5.41 8.44 7.00 2.20
Poly Local 0.49 4332 19.04 9.33 2.12 1.77

Poly Relaxed 0.99 4025 8.1 8.02 3.98 2.12

Robert
64-cell

Synchronous 3.20 25438 13.25 42.40 81.40 2.56
Poly Local 0.49 16750 76.26 37.37 8.21 1.67

PolyRelaxed 2.20 19391 15.45 33.99 42.66 2.57

Robert
256-cell

Synchronous 6.30 111319 31.06 195.68 701.31 2.68
Poly Local 0.49 67242 306.18 150.03 32.95 1.87

Poly Relaxed 5.1 91121 33.12 168.91 464.72 2.37
Median

Filter
Synchronous 2.91 3169 1.39 4.04 9.22 2.64
Poly Relaxed 2.45 2694 1.45 3.55 6.60 2.62

KDE Synchronous 2.14 4921 3.08 6.60 10.53 1.70
Poly Relaxed 1.75 4443 3.42 5.99 7.78 1.69

TABLE 4: Synthesis results for a single Robert’s cross cell with and
without a local clock generator.

One Robert’s cross cell Area (µm2) Power @2Ghz (mW )
Without local clock generator 268.0 0.83

With local clock generator 291.9 1.09

6 EXPERIMENTAL RESULTS

6.1 Synthesis Results

The synthesis results, including the delay, area, total dy-
namic and static power consumption, energy dissipation
of one clock cycle, and area-delay product, are shown
in Table 5. The reduction in delay, seen as equivalent to
increasing the working frequency, is the most significant
benefit of polysynchronous clocking. The results show that
increasing the number of cells limits the performance of
the system when a global CDN with zero clock uncertainty
is implemented. Providing all the cells with synchronized
clock signals is costly. For the system with 256 cells, re-
moving the CDN and instead using locally generated clocks
improves the maximum working frequency by around 12x.
As a result, the output converges to an accurate value much
faster. With a relaxed CDN, the benefit is also significant,
although not as great as with locally generated clocks.
The savings gained by these approaches are presented in
Figure 15.

In terms of area, both approaches decrease the cost in
the three cases with 16, 64, and 256 cells, as shown in
Figure 15. As expected, for large-scale systems (64 and 256
cells), removing the CDN provides more area saving than
simply relaxing the CDN. It provides up to a 39 percent
area reduction in the system with 256-cells. However, for
smaller systems, the area overhead incurred by the local
clock generators diminishes the benefits. We conclude that
relaxing the CDN instead of completely eliminating it is the
better approach for small circuits.

As shown in Table 5 and Figure 15, removing the CDN
results in an overall energy dissipation reduction, except
for the 16-cell circuit. For the 16-cell circuit, removing the
CDN improves the latency and area by 68 percent and
3 percent, respectively. However, the power consumption
of the circuit with the highest frequency increases around
3.5×. This increase in power consumption occurs because
the local clock’s power consumption outgrows the power
savings obtained by eliminating the CDN, which is small
for this circuit. A higher working frequency also increases

Fig. 15: Comparing the savings due to using different approaches of
polysynchronous clocking on various sizes of the Robert’s cross circuit.

the power. Consequently, a 10 percent increase in the en-
ergy dissipation is observed. Thus, unless improving the
working frequency is the main goal, relaxing the CDN or
using a zero-clock-skew CDN might be better choices for
smaller circuits. However, for larger circuits, eliminating the
global CDN and using locally generated clocks is a winning
proposition.

To further evaluate idea of relaxing the CDN in stochas-
tic circuits, we implemented two complex circuits, discussed
in Section 2.3: a median filter based noise reduction circuit
and a kernel density estimation based image segmentation
circuit. These were implemented: 1) using a conventional
synchronous approach with zero clock uncertainty toler-
ance; and (2) in the proposed polysynchronous approach
with a relaxed CDN. FSM-based stochastic circuits with
32 states were used to implement the required tanh and
exp functions. We used a 0.2ns clock uncertainty when
the circuits were synthesized with Design Compiler. Ta-
ble. 5 compares the delay, area, power, and energy results
extracted for these circuits. As can be seen, relaxing the
CDN improves the performance and saves area for both
circuits. The power consumption when using the maximum
working frequency is higher with a relaxed CDN due to the
increase in the frequency. However, more importantly, the
total energy dissipation (power × delay) of the circuits is
improved.
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Fig. 16: The original sample input and the output images produced by post-synthesis simulations of the synthesized Robert’s cross circuits.

6.2 Performance Comparisons

In order to evaluate the performance of the synthesized
circuits, we performed post-synthesis simulations and pro-
cessed the 128 ∗ 128 Lena image using the Robert’s cross
circuits, a 128 ∗ 128 noisy image using the median filter
circuits, and 32 144 ∗ 144 subsequent frames of the “Hall
Monitor” test video sequence [1] using the KDE image seg-
mentation circuits. For simulations with the Robert’s cross
circuits, image pixels were divided into groups of 16, 64, and
256 pixels, depending on the number of circuit inputs. Input
pixels in each group were converted to stochastic signals
and processed by the Robert’s cross cells concurrently. To
produce the output image, we measured the fraction of the
time the circuits’ output signals were high for 1024 cycles.
The output image produced by each circuit was compared
with a “Golden” output image produced by Matlab and an
average error rate was calculated as follows:

E =

∑128
i=1

∑128
j=1 |Ti,j − Si,j |

255.(128× 128)
× 100 (3)

where Si,j is the expected pixel value in the perfect output
image and Ti,j is the pixel value produced using post-
synthesis simulations including timing violations (setup and
hold). The output images produced by post-synthesis simu-
lation of the Robert’s cross circuits are shown in Figure 16.
The mean of the output error rates measured for each circuit
is also shown in Table 5. The outputs from processing the
sample images using the median filter noise reduction and
the KDE image segmentation circuits in the synchronous
and polysynchronous versions of the circuits with a relaxed
CDN are shown in Figure 17. As can be seen in these
results, removing and relaxing the CDN not only has not
decreased the quality of the results, but also in most cases
has actually improved the average error rate of processing
image pixels. This improvement in the quality of the results
is mainly due to the additional randomness introduced by
the polysynchronous clocking.

7 ERROR ANALYSIS

There are several error sources in polysynchronous circuits.
We analyze the effects of these error sources by first examin-
ing the computational errors inherent in stochastic circuits,
and then examining errors that are unique to polysyn-
chronous circuits.

Original
Image

Golden
0.00 percent

Synch.
2.64 percent

Poly-Relax
2.62 percent

a)Median filter noise reduction

Original
Image

Golden
0.00 percent

Synch.
1.70 percent

Poly-relax
1.69 percent

b)KDE image segmentation

Fig. 17: The original sample inputs and the outputs of processing the
sample images by post-synthesis simulations of the synthesized circuits
with a relaxed CDN: a) Median filter noise reduction circuit, b) KDE
image segmentation circuit.

7.1 Sources of Computational Errors

There are three main sources of computational errors in the
conventional synchronous stochastic circuits [36]:

1. EA = function approximation error. This error stems
from the fact that we are computing a mathematical approx-
imation of the desired function. For instance, the FSM-based
stochastic absolute value function used in the Robert’s cross
circuit is an approximation of the desired absolute value
function. The approximation error for such FSM-based func-
tions depends on the number of states. The more states we
use to implement the FSM, the smaller approximation error.
Peng et al. [23] have reported 0.03 percent function approx-
imation error for a 32-state FSM-based implementation of
the stochastic exponentiation function. The function approx-
imation errors in the 16-state implementation of stochastic
Abs function and the 32-state version of the stochastic tanh
function are very close to zero.

2. EQ = quantization error. In converting the input
values in the interval [0, 1] or [-1, 1] into stochastic bit
streams, the SNG rounds the input value to the closest
number in the set of discrete probabilities it can generate.
Increasing the length of the bit streams will reduce this
quantization error [36].
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3. ER = errors due to random fluctuations. Errors due
to random fluctuations are inherent in stochastic computing
since the input values are intentionally randomized. The bit
streams can be described as a Bernoulli distribution and can
be quantified using the variance of the distribution. Thus,
these errors are inversely proportional to the square root of
the length of the stream.

In addition to these errors, the polysynchronous clocking
approach introduces two extra sources of error:

4. EC = errors due to temporally misaligned bits in
the streams. As the average error rate results presented
in Table 5 show, temporal misalignment of inputs is an
unbiased source of error that can either increase or decrease
the mean of the total error in the polysynchronous circuits.
We conclude from these results that, for polysynchronous
clocking, the effect of temporally misaligned inputs on
accuracy is, in fact, minimal.

5. ES = errors due to stall time. When inputs to a
component arrive at different times, the output will be
invalid for a short time, called the “stall time.” Reading the
output during this short interval can reduce the accuracy
of the computation. The error due to stall time will be
discussed further in Section 7.3

Summing all of these error sources, the total error for a
polysynchronous circuit is no worse than:

ETotal = EA + EQ + ER + EC + ES (4)

Based on the error rate results presented in Table 5 and
Figures 16 and 17, we conclude that removing or relaxing
the CDN allows the maximum frequency of the circuit to
be increased without affecting the accuracy of the compu-
tation compared to a conventional synchronous stochastic
implementation of the circuits.

7.2 Metastability

In modern CMOS processes, the effects of metastability have
become increasingly significant, especially in high-speed ap-
plications. Metastability is a phenomenon where a bi-stable
element, such as a flip-flop, enters an undesirable third state
in which the output is at an intermediate level between
logic 0 and 1. A system’s reliability is compromised when
this occurs [39], [40]. An incorrect value might be sampled
which would introduce an error in the computation. The
effect of metastability can propagate to multiple registers
and thereby get amplified. In conventional deterministic
systems with multiple clock domains, each domain crossing
represents a location where metastability could occur.

In SC circuits, however, metastability is not a major issue.
The effect of metastability on the registers can be considered
as a source of error that sometimes causes a change from
0 to 1 and sometimes 1 to 0. The important point is that
these changes in the value of the signals have minimal
effect on the numerical value represented by a long bit-
stream. On average they tend to cancel each other out, and
will ultimately produce an acceptable total error. The ex-
perimental results that we showed for the polysynchronous
implementation of complex stochastic circuits (i.e., the me-
dian filter noise reduction and the KDE image segmenta-
tion circuits) demonstrate that SC circuits are robust to the
effects of metastability and propagated metastability, since

these circuits average the signal value which then masks
timing errors. We can consider the inaccuracy introduced by
metastability as an error caused by temporally misaligned
bits in the streams, or EC , as discussed in Section 7.1.

7.3 Input to Output Synchronization

Assume we have a polysynchronous system processing a
large set of inputs with a limited number of cells that work
concurrently. The input source and so the input data for
each cell changes periodically. For each new set of data,
the input values must be converted to the corresponding
stochastic signals and then transferred to the cells that
require the new information. When neighboring cells work
with polysynchronous clocks, there might be a very short
time, called the “stall time”, between the first and the last
input signals arriving at the cells. For this short period of
time, the output is believed to be invalid.

In a conventional binary system a synchronizer is re-
quired to deal with the stall time. In a stochastic system,
however, the designer can simply consider the output pro-
duced during this short time interval as a valid output.
Comparing the stall time with the total processing time
of each set of input data (e.g. 2ns vs. 256x2ns) allows the
designer to start sampling (or measuring the fraction of
high time) of the output signals immediately after first input
arrives, or immediately after the input changes. Sampling
the output during this small interval does not significantly
influence the accuracy of the computation, given the nature
of the stochastic representation. Eliminating the synchro-
nizer circuitry further reduces the area overhead and design
complexity.

8 FAULT TOLERANCE OF POLYSYNCHRONOUS
CIRCUITS

We compare the error tolerance of our polysynchronous
stochastic circuit designs to conventional synchronous de-
signs. To do so, we preformed trials on the circuits discussed
in Section 2.4, randomly injecting soft errors, i.e., bit flips, on
the internal signal lines and measuring the corresponding
average output error rates.

For the synchronous circuits, the inputs were generated
with SNGs driven by synchronized clocks each with a
period of 2ns. For the polysynchronous circuits, the inputs
were generated by SNGs driven by clocks with periods
varying randomly between 2 and 4 ns. Note that this range
of values provides a variation of up to 100 percent in
the clock periods. To approximate hardware conditions in
which short pulses (“spikes”) cannot satisfy the setup and
hold time requirements of logic gates, high output pulses
that were less than 10 percent of the 2ns clock period (0.2ns)
were filtered out by setting them to zero.

Soft errors were simulated by independently flipping a
given fraction of the input and output signals of each com-
puting element. For example, a soft error rate of 20 percent
means that 20 percent of the total bits in an input value are
randomly chosen and flipped. To inject soft errors into a
computational element such as a MUX, we insert XOR gates
into all of its inputs and outputs. For each XOR gate, one
of its inputs is connected to the original signal of the MUX
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TABLE 6: The average error rate of the stochastic circuits for different soft error injection rates.

Circuit Clocking Approach Injection Rate
0 percent 5 percent 10 percent 20 percent

Robert’s Cross Sync. 2.6 2.6 2.7 2.94
Polysync. 2.59 2.6 2.7 2.94

Median Filter Sync. 3.03 3.08 3.28 4.08
Polysync. 3.13 3.08 3.22 4.04

KDE Sync. 1.21 1.26 1.62 2.84
Polysync. 1.24 1.40 1.67 2.93

and the other is connected to a global random soft error
source, implemented using an LFSR and a comparator [36].
Note that we do not simultaneously inject soft errors on the
input and output signals of any given component. Also, we
do not inject soft errors more than once on the intermediate
line between two components (thereby potentially undoing
a bit flip).

We apply this approach to all of the basic computa-
tional elements of the stochastic circuits. Hardware sim-
ulations were performed using the ModelSim hardware
simulator [28]. Maximal period 32-bit LFSRs were used for
converting input pixel values into stochastic bit streams. Bit
streams of length 1024 were used to represent the values.
The processing time, however, is determined by the longest
clock period among the SNGs that generate inputs to the
circuit. Thus, for inputs with shorter clock periods, longer
streams are required compared to those with longer periods.
Ten trials were performed for each case to ensure statistically
significant results. For each trial we used a different initial
condition with ten different LFSR seed values for each SNG.
Simultaneously, ten different sets of values for the periods
of the polysynchronous clocks were used. We present the
average results of these trials.

The sample images shown in Section 6.2 were used as the
inputs to the circuits. Table 6 shows the average output error
rates of the two design approaches under different soft error
injection rates. As can be seen, the polysynchronous stochas-
tic circuits are as error tolerant as the synchronous versions.
For both polysynchronous and synchronous circuits, the
error tolerance scales gracefully to very large numbers of
errors. Note that, while we presented the error-tolerance
results for a frequency variation of 100%, the circuits will
gracefully tolerate errors for frequency variations beyond
100% if the inputs are processed for a long enough time
(e.g. 1024 times the largest period).

9 RELATED WORK AND DISCUSSION

Asynchronous design methodologies have been studied for
decades [27], [33]. Instead of synchronizing transitions with
a global clock, asynchronous systems are organized as a
set of components which communicate using handshaking
mechanisms. The drawback of asynchronous methodologies
is the overhead required for the handshaking mechanisms.

Circuits with multiple independent clock domains,
dubbed “globally asynchronous locally synchronous”
(GALS), have been widely studied [8]. GALS architectures
consume less dynamic power and can achieve better perfor-
mance than architectures with a single clock domain [26],
[38]. However, the circuitry for domain crossings is complex
and problematic. Techniques such as stretching [8] [46] and

pausing the clocks [38] have been proposed. Nevertheless,
the circuitry for the handshaking needed at domain cross-
ings is costly. Consequently, the splitting typically is only
performed at a coarse level.

Asynchronous and GALS design methodologies are ap-
plicable to both SC and conventional designs. The paradigm
advocated in this paper, however, is only applicable to
SC systems and differs from the asynchronous and GALS
approaches in that no complex handshaking mechanisms
are needed. The skew tolerance provided by stochastic com-
puting allows independent clock domains to be connected
together seamlessly without influencing the accuracy. Al-
ternatively, it allows for a much less costly global clock
distribution network, with relaxed constraints. This, in turn,
provides very significant benefits in terms of area, perfor-
mance and energy. The increase in performance, in partic-
ular, can be quite significant. For applications that require
modest accuracy, this increase in performance could more
than offset the latency incurred by adopting a stochastic
representation.

High energy dissipation is one of the main challenges in
the practical use of SC [15]. Stochastic circuits are compact
and so consume little power. However, given the high
latency, the energy consumption (which is power multiplied
by time) is high. In recent work, Alaghi et al [3] proposed
energy reduction techniques for stochastic computing. The-
ses techniques exploit the tolerance that SC offers to timing
errors. This permits very aggressive voltage scaling with-
out significant quality degradation. Their simulation results
show that SC circuits can tolerate aggressive voltage scal-
ing with no significant SNR degradation after 40% supply
voltage reduction (1V to 0.6V), leading to 66% energy sav-
ing. Similarly, a 100% frequency boosting of the optimized
circuits leads to no significant SNR degradation for several
representative circuits.

The approach of Alaghi et al is conceptually similar and
complementary to the one that we propose in this paper. The
impact of timing errors due to voltage scaling is similar to
the impact of clock skew errors. In both cases, SC naturally
and effectively provides error tolerance. To our knowledge,
the work in this paper and the work of Alaghi et al. [3]
are the first to introduce and exploit the skew tolerance
advantage of SC circuits. This work focuses on optimizing
CDNs while the work of Alaghi et al. studies the effects
of voltage and frequency scaling. In future work, we will
consider the impact of both energy and clock distribution
optimizations for SC.

10 CONCLUSIONS

This paper proposed polysynchronous clocking, a design
strategy for exploiting the skew tolerance of SC circuits.
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We showed that, from basic stochastic operations, such as
multiplication and scaled addition, to complex stochastic
circuits, the correct output is computed even when the
inputs are not synchronized. We explored two approaches
of polysynchronous system design to mitigate the costs of
the CDNs. In the first approach, we removed the global
CDN and instead used locally generated clocks to design
the Roberts cross stochastic system. Quantifying the costs
and benefits, the maximum working frequency, the area, and
the energy consumption improved by up to 12x, 39 percent,
and 23 percent, respectively, for the Roberts cross system
with 256 cells. For smaller systems, the area and energy
overhead incurred by the local clock generators diminished
the benefits of removing the CDN.

Experimental results showed that, for small scale
stochastic circuits such as the Roberts cross circuits with
16 cells, the median filter noise reduction circuit, and the
kernel density estimation based image segmentation circuit,
relaxing the CDN is a more efficient choice. The area,
speed, are energy are all improved by a relaxed CDN.
Post-synthesis simulations on sample images showed that
removing and relaxing the CDN not only did not degrade
the quality of the output, but in some cases it actually
improved the accuracy of results by introducing additional
randomness. We showed that circuits designed with either
of these polysynchronous approaches are as tolerant of
errors as conventional synchronous stochastic circuits.
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